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1. Introduction

Lip-reading or speech-reading techniques 
that can convert lip movements to speech 
have long been pursued to help people 
with voice disorders or hearing impair-
ments.[1–3] These techniques facilitate 
communications and have the potential 
to replace human interpreters[4] in med-
ical service applications. Lip-reading also 
provides an effective human–machine 
interface that uses natural speech for inter-
actions with smart machines,[5,6] including 
robotics,[7] prosthetics,[8] computers,[9] 
and even augmented reality (AR)/virtual 
reality (VR) environments.[10,11] Silent 
speech interfaces, where no acoustic 
sound is produced, are often in demand 
when privacy or a quiet environment is 
desired, such as in public areas or hospi-
tals. To realize lip-reading, camera-based 
visual solutions have been extensively 
explored to capture the visual features 
of lip movements.[12–16] In addition to 
external video tracking devices, visual 
lip-reading requires the users to be con-
stantly within the line-of-sight of a camera, 

which may not be possible when the user is on the move and 
when the lighting conditions are unsatisfactory. Alternatively, 
ultrasound-based solutions exploit bulky ultrasonic imaging 
devices to build 2D lip and tongue images.[17,18] Another more 
portable ultrasound-based method is to emit inaudible signals 
using speakers and detect signals reflected by the moving lips 
using microphones.[19,20] This method is vulnerable to multi-
path interferences from users’ body movements and objects 
in the surroundings. In vivo on-skin sensing technologies for 
tracking lip movements are emerging.[21] For example, perma-
nent magnets attached to the tongue,[22,23] strain sensors placed 
on the face,[24,25] electromyography (EMG) electrodes placed 
on the face,[26–29] and an electroencephalogram (EEG) helmet 
worn around the head[30–32] have been utilized to capture lip 
movements and tongue positions. However, the magnets in the 
mouth are intrusive, and EEG signals suffer from noise when 
humans go astray mentally.[2]

Face-worn EMG sensing is an attractive method for lip-
reading. During silent (subvocal) or normal (vocal) speech, 
lip movements result in subtle muscular activities, which 
can be reflected in the EMG signals collected near the mouth 

Lip-reading provides an effective speech communication interface for 
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Existing systems are generally challenged by bulkiness, obtrusiveness, 
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with the curvilinear and dynamic surfaces of the skin, which is crucial for a 
high signal-to-noise ratio and minimal interference. Machine learning algo-
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and throat.[33,34] EMG-based lip-reading has some advantages, 
including non-invasiveness, robustness in a noisy or dark envi-
ronment, and high sensitivity for measuring subtle lip move-
ments. However, there remains a gap for an intuitive and unob-
trusive technology to track and interpret lip movements, both 
on the hardware (i.e., EMG sensing system) and software (i.e., 
data analysis) side.

In terms of EMG sensing, most existing systems employed 
commercial pre-gelled Ag/AgCl electrodes. These electrodes 
have limitations for long-term use, including bulkiness that 
adversely constrains the natural lip movements, skin irrita-
tion during long-term wear, and poor robustness owing to 
the dehydration of the gel.[35–37] More recently, skin-attachable 
gel-free dry electrodes have been developed to acquire EMG 
data for speech recognition.[38,39] The reported dry electrodes 
employed rigid metal films as conductive sensing materials, 
which have a large mismatch in the mechanical properties of 
the skin. In addition, these electrodes are not transparent on 
the face and rely on external tapes to adhere to the skin, which 
may preclude the continued use of such devices. In terms of 
signal processing, although researchers have used machine 
learning methods to decode EMG-speech relationships,[38,39] 
the main challenges lie in ambiguities at the word level. Var-
ious vocabularies with different phonemes[40] may belong to 
the same or similar viseme groups,[41] resulting in very similar 
muscular movements and EMG signals.[12,42,43] Namely, several 
phonemes produce lip movements that can be indistinguish-
able (also known as homophones), entailing that there is no 
one-to-one mapping between phonemes and visemes. Besides, 
the position of electrodes deserves further investigations to use 
fewer electrodes while still achieving higher accuracy.

To address the existing challenges for lip-reading, in this 
work, we present the design of a truly natural and robust EMG-
based lip-reading system that can capture speech-relevant lip 
gestures and decode lip movements for speech. The system 
allows for a mechanically imperceptible, skin-friendly, visually 
unobtrusive platform for tracking and interpreting lip move-
ments with minimal interference. The system is enabled by 
self-adhesive, semi-transparent, and conformable dry elec-
trodes for high-quality EMG signal acquisition. The gel-free 
dry EMG electrode comprises silver nanowires (AgNWs) as a 
conductive interface to the skin surface, and D-sorbitol modi-
fied waterborne polyurethane (WPU) as a self-adhesive com-
pliant substrate. Furthermore, ML algorithms (linear discrimi-
nant analysis [LDA] and support vector machines [SVM]) were 
implemented to decode the EMG signals. The combination of 
high-fidelity unobtrusive EMG sensing and ML-assisted speech 
recognition enables a highly robust non-acoustic speech com-
munication interface. This speech interface is not affected by 
environmental conditions (lighting conditions and noise levels) 
and can be used no matter whether acoustic sounds are pro-
duced (in situations of normal and silent speech). Based on 
the EMG-based lip-reading interface, one application in the AR 
environment was demonstrated to convert lip movements into 
words in real time. The interpreted words were then used as 
commands to control the motion of AR characters by speech. 
Another application was developed to enable users to use non-
acoustic speech interfaces to call for assistance, which facili-
tates communications with healthcare providers.

2. Result and Discussion

2.1. Overview of the Developed EMG-Based Lip-Reading System

Figure 1a presents the design of the EMG-based lip-reading 
system. As essential components of the hardware of the 
system, epidermal EMG sensing electrodes are developed to 
capture speech-relevant lip motions in a minimally invasive 
manner. The collected EMG data are analyzed by ML methods 
to decode lip movements for speech recognition. Eight-channel 
EMG electrodes are employed to obtain lip muscle activities 
from changes in biopotentials, as shown in Figure  1b. The 
monopolar configuration[44] for EMG sensing is adopted here. 
Eight electrodes are placed on the muscular regions relevant 
to speech articulation[27] as active sensing electrodes. A shared 
ground electrode is placed on the clavicle because the clavicle 
generates negligible muscular signals. Specifically, four elec-
trodes are placed near the mouth to track muscle activities of 
the supralabial region (zygomaticus minor and zygomaticus 
major) and infralabial region (depressor anguli oris and men-
talis).[45–48] Detection of the tongue position is indispensable 
to differentiate words that look exactly alike in lip movements 
when spoken.[27,46,49] Four extra EMG sensors are placed on the 
neck to capture tongue movements through muscles located 
in the ventromedial and submental regions.[45,46] Symmetrical 
equivalents of target locations across the craniocaudal axis are 
ignored to avoid feature repetition.

EMG sensing electrodes are key components of the lip-
reading system and should be truly unobtrusive to encourage 
long-term use and wide-scale deployment. Ideal EMG elec-
trodes should: 1) be hydrogel free (i.e., dry) to maintain signal 
quality over the long-term and reduce skin irritation; 2) can 
fully conform to the microscopically rough skin surface and 
therefore minimize the electrode-skin impedance, which is cru-
cial for capturing subtle muscle activities with a high signal-to-
noise ratio (SNR); 3) be stretchable to accommodate facial and 
neck skin deformations (up to ≈15% strain[33]); 4) be self-adhe-
sive without using external tapes; 5) have good transparency to 
ensure visual unobtrusiveness.

As schematically illustrated in Figure 1c, the dry EMG elec-
trode that satisfies these requirements are designed by opti-
mizing material selections, electrode structures, and electrode 
thicknesses for conformable contact. Figure  1d shows the 
acquired EMG signal when the words “ship” and “sheep” were 
spoken. ML methods are used to classify the acquired eight-
channel EMG signals and convert them to spoken words. The 
flowchart of EMG signal processing includes the data acquisi-
tion, de-noising of the signal, feature selection, classification, 
and the output of the recognized words. More details regarding 
the EMG electrodes and the ML-assisted signal processing are 
discussed below.

2.2. Design, Fabrication, and Characterization  
of EMG Sensing Electrodes

The EMG electrode includes the sensing and interconnec-
tion parts (Figure  1c). The sensing part is a bilayer structure 
including the conductive AgNW nanocomposites for acquiring 
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EMG signals. The self-adhesive D-sorbitol-WPU (D-W) is used 
as the substrate for embedding AgNWs and facilitating the 
attachment to the skin. AgNWs were employed as active sensing 
materials. Among various conductive materials, AgNWs are 
competitive candidates for stretchable transparent electrodes 
due to their exceptional conductivity, good mechanical compli-
ance that can achieve reliable electromechanical performance, 
and long aspect ratio that can achieve good transmittance at a 
given conductivity.[50–52] As shown in Figure 2b, AgNWs make 
electrical contact with each other to form conductive pathways 
while maintaining decent transparency. The interconnection 
part has the same structure (AgNWs embedded in the D–W 
substrate). It is coated with an extra thin layer of self-adhesive 
silicone to isolate the interconnection from the skin electrically. 
The interconnection is patterned into the ring shape due to 
its good structural stretchability and thus a reduced resistance 
change during skin deformations.[53,54]

Figure 2a–e presents the fabrication process of the AgNW/D-W  
(ADW) electrodes. A shadow mask was first prepared and 
attached to a tape liner with low surface energy that makes 
it easy to transfer AgNWs to another substrate (Figure  2a). 
AgNW/ethanol solution was spray-coated over the mask to 
form the desired pattern (Figure 2b). After the mask was peeled 
off, a solution of D-sorbitol and WPU in N, N-Dimethylfor-
mamide (DMF) (DWD) was spin-coated on top of the AgNWs 
followed by evaporating the solvent (Figure  2c). AgNWs were 
then embedded just below the surface of the D–W substrate to 
improve stability during long-term wear. Afterward, the toner 
transfer paper with a water-soluble top coating (blue side) was 
attached to the formed ADW film to transfer it (Figure 2d). A 

thin layer of self-adhesive silicone was then drop-casted onto the 
interconnection part (Figure 2e). The edges were cut off to get 
the final ADW electrodes. For skin attachment (Figure  2f–h),  
the ADW electrode was laminated to the skin. The toner 
transfer paper can be detached with the help of a wet cloth 
to dissolve the water-soluble layer. The specific dimensions of 
each part of the ADW electrode can be seen in Figure S2, Sup-
porting Information.

In addition to high conductivity, stretchability, and transmit-
tance, the conformable contact between the electrode and the 
free-form human skin surface[55,56] is also essential in elec-
trode development. The conformable contact can help achieve 
low electrode-skin impedance and acquire high-fidelity EMG 
signals[50,57] during dynamic and subtle lip movements. As 
detailed in the Supporting Information, an energy-based ana-
lytical model was used to optimize the electrode for achieving 
conformable contact. The model was modified based on the 
literature[58–60] to extend the applicability for nonlinear elastic 
materials. For conformable contact, the work done by the adhe-
sion force between the electrode and the skin should be equal 
to or larger than the sum of the bending energy of the electrode 
and the strain energy of the skin. Softer materials with higher 
adhesion force and smaller electrode thickness are beneficial 
for achieving conformable contact. The former two parameters 
can be tuned by changing the ratio between D-sorbitol and 
WPU. The critical electrode thickness to achieve the conform-
able contact can thus be determined at the specific ratio (see 
Supporting Information).
Figure 3a–c compares the stress–strain curves, adhesion forces 

tested on the pig skin, and transmittance for electrodes with  

Small 2023, 19, 2205058

Figure 1. Overview of the developed EMG-based lip-reading system. a) Design of the hardware (top) and software (bottom) of the AgNWs-D-sorbitol-
WPU (ADW) EMG-enabled lip-reading system comprising the optimization of EMG electrodes and the ML-assisted EMG signal processing. b) Sche-
matics showing sensor positions on the skin near the mouth and on the neck. c) Exploded view of the EMG electrode and a picture of the electrode 
placed on the facial skin. d) Examples of EMG signals acquired by the developed EMG electrodes for one pair of words (“sheep” and “ship”) from the 
same viseme group. Only two channels of EMG signals are shown as examples.
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different ratios of D-sorbitol and WPU. As the ratio of D-sorb-
itol decreases, the transmittance increases, while the modulus 
and adhesion force of the electrode decrease. As shown in 
Table S2, Supporting Information, the critical thickness of elec-
trodes made by AgNWs and pure WPU (without D-sorbitol) is 
around 7 µm, which means that electrodes with a thickness less 
than or equal to 7 µm can achieve a conformable contact. When 
adding 10 wt% or 20 wt% of D-sorbitol, the critical thickness 
jumps to 16–17  µm. 30 wt% of D-sorbitol results in a critical 
thickness of around 23 µm. To ensure high transmittance, low 
modulus, good self-adhesiveness, and relatively high critical 
thickness for easy fabrication, 10 wt% D-sorbitol was selected 
as the ratio for fabricating ADW electrodes. Figure 3d–e show 
SEM images of ADW electrodes with different thicknesses on 
the skin replica. The thick electrode (≈215 µm) shows apparent 
gaps with the skin replica (Figure  3d). The electrode with a 
thickness lower than the critical thickness (≈14 µm) conforms 
to the texture of the skin (Figure 3e).

As expected, good skin conformability leads to minimized 
electrode-skin impedances (Figure  3f), which is inducive to 
achieving high SNRs of EMG signals.[61] For pure AgNW-WPU 
(AW) electrodes, when the thickness dropped from over 200 µm 
to below 20  µm, the impedance drastically decreased because 
thinner electrodes possess better conformability. The imped-
ance further decreased when adding 10 wt% D-sorbitol due to 
the increased skin adhesion, achieving a comparable impedance 
to commercial pre-gelled electrodes. Meanwhile, the ADW elec-
trode showed similar performance with or without about 15% 
compressive and 15% tensile strains, as indicated in Figure 3g, 
illustrating good electromechanical stability to accommodate 
skin deformations. As shown in Figure  3h,i, when subject to 

up to 15% strain, the resistance changes of ADW electrodes had 
a relatively large variation at the first three cycles of stretching, 
but the resistance change stabilized in the following stretching 
cycles. After the initial cycles of stretching and releasing, the 
ADW electrode exhibited a slight resistance variation (≈11%). 
Such variations would not affect the EMG sensing performance 
if the skin-electrode impedance is stable, which is much more 
important for biopotential sensing.[62]

The electrode can be detached from the skin using a tweezer 
or similar tools (Figure S3, Supporting Information). No 
water or other solvents were needed to help with the detach-
ment process. There was no residue on the skin. The adhe-
sion of the ADW electrode on the pig skin decreased slightly 
by around 13% after ten cycles of attachment/detachment, as 
shown in Figure S4, Supporting Information. The adhesion 
after ten cycles was still sufficient for reliable attachment on 
the skin. The SNRs of EMG signals during ten cycles of attach-
ment/detachment are quite similar, varying between 16.06 and 
17.26 dB (Figure S5, Supporting Information). The adhesion of 
the ADW electrode on the pig skin decreased by around 20% 
after 7 days of testing (Figure S6, Supporting Information). 
One attachment/detachment cycle was performed per day. 
The adhesion during seven days of testing was still sufficient 
for reliable attachment on the skin. The SNRs of EMG signals 
for each day are very similar, changing from 15.37 to 16.62 dB 
(Figure S7, Supporting Information). The results illustrate that 
the ADW electrode can maintain sufficient adhesion and EMG 
sensing properties during ten cycles of attachment/detachment 
and seven days of testing.

The ADW electrode was found to be robust to changes 
in skin humidity. The EMG signals for the word “sheep” 

Small 2023, 19, 2205058

Figure 2. Schematic illustrations of the fabrication and attachment process of the developed ADW electrodes. a) Attach the mask to a substrate. 
b) Spray coating of AgNWs over the mask. An SEM image of spray-coated AgNW networks is shown. c) Spin coating the DWD solution on top of the 
AgNW networks to form thin AgNW/D-W composites. d) Transfer the prepared AgNW/D-W composites using the toner transfer paper. e) Drop-casting 
self-adhesive silicone onto the interconnection part and cut off excessive edges. f) Picture of a fabricated ADW electrode on the toner transfer paper. 
g,h) Attach the fabricated electrode to the skin followed by removing the toner transfer paper with water.
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were acquired on the skin without any sweat and with sweat 
(Figure S8, Supporting Information). The subject was asked 
to jump for 5 min to generate sweat on the skin surface. The 
SNRs were 16.04 and 16.54 dB for the skin without any sweat 
and with sweat respectively, indicating no significant changes 
due to sweat. The adhesion was found to be robust in high skin 
humidity. Water or sweat are also known to be favorable to the 
skin-electrode signal transduction due to the improved conduc-
tivity channel.[35,63]

The electrode can be cleaned using DI water and ethanol. 
The AgNW sensing area is not suggested to be rubbed rig-
orously to avoid degradation in the conductivity. Complete 
cleaning of an electrode with excessive dust and skin debris 

can be challenging due to the adhesion of the electrode. The 
electrode is reusable if it is protected from excessive dust in a 
good manner and the skin surface is properly cleaned before 
attachment. As our experiments have demonstrated, the elec-
trode can be reusable for at least ten attachments/detachment 
cycles and over one week. After this time period, new electrodes 
may be used.

2.3. EMG Sensing Performance and Vocabulary Selection

To test the EMG sensing performance of the developed dry 
ADW electrodes, the EMG signal quality, evaluated by the SNR, 

Small 2023, 19, 2205058

Figure 3. Characterizations of ADW electrodes. a) Stress–strain curves, b) adhesion force to the pig skin, and c) transmittance of electrodes with 
different weight ratios between D-sorbitol and WPU. The top view (tilted 30°) and cross-sectional view of d) the thick ADW electrode (≈215 µm) and 
e) the thin ADW electrode (≈14 µm) on the skin replica. f) Comparisons of the electrode-skin impedance of commercial gel electrode, thick AgNWs-
WPU (AW) electrode (around 200 µm in thickness), thin AW electrode, and thin ADW electrode. g) Comparisons of the electrode-skin impedance of 
the ADW electrode with and without strain. h) Relative resistance changes of the ADW electrode under tensile strain. i) Relative resistance changes of 
the ADW electrode under repeated stretching/releasing cycles. The ADW electrode was stretched to the strain of 15% in each cycle.
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was compared against the gold standard (commercial pre-gelled 
Ag/AgCl electrodes). Eight-channel EMG signals related to the 
lip movements for the word “ship” were captured using both 
types of electrodes, as given in Figures S9a and S10a, Sup-
porting Information, respectively. The SNRs of the EMG sig-
nals obtained using ADW electrodes and pre-gelled electrodes 
in channel 3 were 14.83 and 11.85  dB, respectively. Conform-
able electrode-skin contact achieved by the optimized materials 
and electrode thickness guarantees the high SNR of the ADW 
electrodes. The final ADW electrodes are gel-free, conform-
able to the skin surface, stretchable, self-adhesive, and semi-
transparent, allowing for mechanically and visually unobtrusive 
monitoring of EMG signals with high precision.

The robustness of EMG sensing was further evaluated 
in different situations, as summarized in Figure 4. For the 
silent speech, the subjects were asked to mouth their speech 
with facial and tongue movements but without producing any 
audible sound. The SNRs of EMG data collected by ADW elec-
trodes at channel 3 under the normal condition, dark environ-
ment, noisy environment, and silent speech were found to be 
14.83, 14.78, 14.92, and 13.02 dB, respectively. The results dem-
onstrate the excellent adaptability of EMG sensing under var-
ious scenarios. The SNR decreased (≈1.8 dB) for silent speech 
because the muscular movement is slightly weaker. Table S3, 
Supporting Information shows the detailed SNRs of EMG data 
collected by ADW and pre-gelled electrodes from channels 1 to 
8 under normal, noisy, and dark environments. Compared with 
visual and acoustic-based solutions, EMG-based lip-reading 
is not susceptible to environmental lighting conditions and 
noises.

To test the accuracy of the lip-reading system (discussed 
in the next section), a list of words covering all classes of 
visemes[64,65] (Figure S11, Supporting Information) was selected 
for EMG signal acquisition. Each word was repeated 50– 60 
times. There are 12 different visemes in the English language 
that represent distinct lip gestures unique to different pho-
nemes.[66,67] A phoneme is a unit of sound that distinguishes 

the pronunciation of the words,[68] while a viseme is a unit of 
visual speech[64] that includes phonemes with identical visual 
representations. Words with different phonemes may have 
very similar visemes. For instance, “sheep” and “ship” have dif-
ferent second phonemes, which are “/i:/” and “/ɪ/” respectively. 
But they share similar visual lip gestures and belong to the 
same viseme as shown in Figure S11, Supporting Information 
(viseme class “Spread”). This many-to-one mapping between 
phonemes and visemes poses significant challenges to lip-
reading, especially for commonly used visual solutions.

2.4. Lip-Reading via Machine Learning Methods

In this work, the ML algorithms were trained by labeled EMG 
signals. There were eight electrodes attached to different posi-
tions of the volunteers’ face and neck. Each electrode acquired 
an EMG signal when the volunteer spoke. The eight EMG sig-
nals were segmented (Figures S12 and S13, Supporting Infor-
mation), where each segment contained a single word. Since 
the speaker would pause for a random time between words, we 
would extract the word portions of the recordings.

Six commonly used EMG features (Table S4, Supporting 
Information) from the time and frequency domains were 
employed. For each channel, the root means square, variance, 
mean, median frequency, zero crossing, and Wilson amplitude 
were computed. Therefore, for each word, there were 48 fea-
tures. With the computed features, several ML methods for 
classification were trained, including the LDA and SVM clas-
sifiers. We obtained their performance via fivefold cross-vali-
dation, where the training and validation sets were selected by 
random sampling. Once the classifiers were trained with the 
four sets, we validated them with the remaining set. This pro-
cess was repeated five times. The results of each classifier were 
summarized by finding its average validation accuracy.

Words with different pronunciations were first analyzed. 
Eleven words from 11 distinct viseme groups were selected 
(neglecting the “closed” viseme group) from Figure S11, Sup-
porting Information: Bird, bite, boat, fan, choke, kay, pay, 
sheep, tea, thin, and way. Figure 5a and Figure S14a, Sup-
porting Information show the confusion matrix (accuracy) of 
LDA and SVM classifiers for subject 1, respectively, where the 
vertical/horizontal axes represent true/predicted classes. The 
recognition accuracy of the LDA classifier was 97.6%, which 
has a better performance than that of SVM (accuracy of 94.4%). 
The receiver operating characteristic (ROC) curve related to the 
word “pay” (Figure  5c for LDA and Figure S14b, Supporting 
Information for SVM) also shows excellent performance when 
using both classifiers.

The vocabularies with similar pronunciations were then ana-
lyzed. Nine pairs of words were selected from the same viseme 
group (Figure S11, Supporting Information): Sea versus tea, bay 
versus pay, then versus thin, fan versus van, bite versus but, 
choke versus joke, boat versus book, sheep versus ship, and 
gay versus kay. The accuracies of LDA and SVM for subject 1 
were 90.4% (Figure  5b) and 85.4% (Figure S15a, Supporting 
Information), respectively. The high accuracy and the ROC 
curve related to the word “pay” (Figure  5d and Figure S15b, 
Supporting Information) show that the proposed EMG-based 

Small 2023, 19, 2205058

Figure 4. EMG signals (channel 3) for the word “ship” corresponding to 
normal conditions, dark environments, noisy environments, and silent 
speech.
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lip-reading method has the capability to identify vocabularies 
with very similar pronunciations. To compare the performance 
between normal and silent EMG signals, the lip-reading results 
of silent and vocal EMG signals for two pairs of words from the 
same viseme groups (ship vs sheep, choke vs joke) were com-
pared. The difference is minimal (0.6%), indicating the applica-
bility of the proposed lip-reading to silent speech (Figure 5e,f). 
Results for subjects 2–4 can be seen in Figures S16–S21, Sup-
porting Information. Overall, the LDA showed better perfor-
mances than SVM among all the four subjects.

To suggest the optimal electrode position and the minimal 
number of electrodes, we analyzed EMG signals from different 
channel combinations. Figure 6a presents the results for the 
words with different pronunciations (from different viseme 
groups) related to subject 1, while Figure  6b for words with 
similar pronunciations (from the same viseme group) related 
to subject 1. Tables S5 and S6, Supporting Information show 
the recognition accuracy of each channel alone and the overall 
accuracy using the LDA classifier for all subjects. Overall, the 
EMG signals collected from position 4 have the best accuracy 
and signals collected from position 8 have the worst accuracy, 
which is applicable among all the four subjects. Besides, the 
electrodes on positions 2, 5, and 8 can be removed if we want 
to reduce the number of electrodes at the cost of sacrificing 

some accuracy. The used ML classifiers are not computationally 
intensive. The ML classifiers complete the recognition in less 
than 0.1 s.

Table S7, Supporting Information shows the comparison of 
the proposed system to other systems using various sensing 
methods. All listed systems in Table S7, Supporting Informa-
tion were portable or potentially portable. It should be noted 
that the mentioned systems in the literature did not show 
results for recognizing words with similar pronunciations (i.e., 
viseme groups). Thus, the recognition result of words from 
different viseme groups was used for comparison. The com-
parison reveals that our system can achieve a high speech rec-
ognition accuracy with portable and skin-conformable sensing 
electrodes that are mechanically and visually unobtrusive.

Both hardware and software contribute to improved accuracy 
in speech recognition. In terms of hardware, signals acquired 
from the developed nanowire electrodes have high SNRs due 
to the conformable contact with the skin surface and low skin-
electrode impedance. The SNRs are comparable to and even 
slightly higher than SNRs of signals acquired from commer-
cial pre-gelled electrodes (Table S3, Supporting Information). 
Higher SNRs are crucial for capturing subtle muscle activities 
with high precision and contribute to the accuracy of speech 
recognition.

Small 2023, 19, 2205058

Figure 5. Recognition results of subject 1 enabled by the ML-assisted EMG signal processing. a) Confusion matrix for 11 words from different viseme 
groups when using the LDA classifier. b) Confusion matrix for nine pairs of words with similar pronunciations (from the same viseme group) when 
using the LDA classifier. c) The corresponding ROC curve related to the word “pay” in (a). d) The corresponding ROC curve related to the word “pay” 
in (b). e) Confusion matrix for subvocal words using the SVM classifier. f) Confusion matrix for vocal words using the SVM classifier. For all confusion 
matrices, the vertical/horizontal axes represent true/predicted classes.
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In terms of software, ML-assisted conversion of EMG signals 
to speech improves accuracy. The selected six parameters pro-
vide distinguishable features for the ML algorithm to identify 
each word. Further, we tested several popular state-of-art algo-
rithms and chose the best of them. We decided to work with six 
features instead of using the high sampling rate raw data. This 
choice speeds up the algorithms without sacrificing accuracy. 
In future work, we plan to search for other informative features 
and work with more sophisticated ML algorithms.

2.5. Applications in Augmented Reality Environment and 
Healthcare

Two demonstrations were developed to illustrate the poten-
tial applications of the developed EMG-based lip-reading 
system as speech communication interfaces (Figures 7 and 8).  
More details are provided in the experimental section. AR 
technologies have shown enormous commercial applications 
in training, entertainment, and marketing, to name a few. A 
proof-of-concept application was developed to demonstrate the 
EMG-based lip-reading system for interacting with the AR envi-
ronment (Figure  8a and Video S1, Supporting Information). 
An AR software was employed on the iOS platform (Figure 7), 
where the EMG-based lip-reading system can directly control 
the movement of an AR character in real time with the help of 
a data transfer technique, the MQ telemetry transport (MQTT) 
method.[69] The ML lip-reading model was pre-trained ahead of 
time. For real-time applications, when mouth and neck muscles 
corresponding to different words (e.g., “run,” “walk,” “idle,” 
and “dance”) were formed and collected in the EMG data, the 
trained ML model interpreted the word. The system then sent 
the interpreted words as control commands to the AR character 
by MQTT. Simultaneously, the AR character could make cor-

responding movements according to the commands generated 
by speech-relevant lip movements. Unlike voice control (having 
noise issues) and video-based control (having lighting issues), 
this control interface leads to a more robust and interactive 
experience enabled by natural speech.

The EMG-based lip-reading speech interface can also be used 
in healthcare. Another software was developed on the iOS plat-
form (Figure 7) to display the text information and play corre-
sponding audio based on the interpreted words from collected 
EMG signals (Figure  8b and Video S2, Supporting Informa-
tion). The EMG signals may be acquired from patients lacking 
voice abilities, or when the room is too dark/noisy, or when pri-
vacy is a concern. The lip-reading system can decode the EMG 
signals to speech and output the corresponding text and audio 
via the software in real time. Then, healthcare providers can see 
the displayed text and/or hear the sound. In the demonstration, 
“help,” “water,” “yes,” and “no” were integrated into the system 
as examples.

3. Conclusion

In summary, a series of materials, electrode design, fabrication 
process, analytical calculation, and speech recognition algo-
rithm was presented that realize unobtrusive monitoring and 
interpreting of speech-relevant EMG signals. Considering all 
the materials used, the cost of one ADW electrode is ≈$0.5. The 
cost can be reduced for mass production. The cost of a custom-
ized portable device for EMG data acquisition and analysis is 
estimated to be less than $50.

The presented lip-reading system has the following salient 
features that address challenges faced by other lip-reading sys-
tems, including bulkiness, obtrusiveness, and poor robustness: 
1) The proposed sensors can be directly attached to the skin to 

Small 2023, 19, 2205058

Figure 6. Recognition results of subject 1 for different combinations of EMG channels when signals were processed by LDA. a) Accuracies of 11 words 
from different viseme groups. b) Accuracies of nine pairs of words from the same viseme group. The last configuration used all eight-channel. The 
accuracy of each channel alone is also indicated on the schematic.
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capture lip movements in vivo, eliminating complicated setups 
and line-of-sight constraints required for visual and acoustic-
based methods. 2) Compared with visual and acoustic-based 
speech recognition, the EMG-based lip-reading system is more 
robust under noisy and dark environments and can recognize 
words from different or the same viseme groups via ML algo-
rithms. 3) The sensors are compliant, lightweight, and can 

form seamless contact with the curvilinear skin surface under 
daily motions. The intimate contact and minimal interfer-
ence are key to the accurate tracking of subtle lip movements 
for both normal and silent speech. 4) The sensors are gel-free, 
self-adhesive, and semi-transparent, allowing for unobtrusive 
monitoring while mitigating aesthetic concerns. To illustrate 
potential applications as a non-acoustic speech communication 

Small 2023, 19, 2205058

Figure 7. Schematics of the application development process for the AR and healthcare applications shown in Figure 8. For hardware, the amplifier 
refers to the bioamplifier and the data acquisition system refers to the PowerLab instrument. For software, the data acquisition software refers to Lab-
Chart. The ML-assisted EMG signal processing was implemented in MATLAB. The command transfer module refers to an open-source MQTT project 
M2MqttUnity. The cloud service was provided by Amazon Web Services. Unity 3D and Xcode were used as app development tools.

Figure 8. EMG-based lip-reading systems for AR and healthcare applications. Real-time EMG signals were captured using the EMG electrodes and 
speech was interpreted in real time. a) Applications in human-computer interfaces for AR environments. The interpreted speech (i.e., “idle,” “dance,” 
“walk,” and “run”) was used to control different motions of the AR character. b) Applications in healthcare applications. After lip-reading, animated 
texts corresponding to the interpreted speech (i.e., “help,” “yes,” “water,” and “no”) were displayed on the screen and corresponding sounds were 
played to call for assistance and to facilitate communications.
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interface, two proof-of-concept prototypes for AR control and 
healthcare were developed. The EMG-based lip-reading enables 
speech (either silent or normal speech) recognition through 
muscular movements. It is expected to benefit individuals with 
speech and hearing disorders and lay the ground for the devel-
opment of novel communication interfaces for prosthetics,  
AR/VR, gaming, and robotic control.

The presented system can be improved in several aspects 
for future work: 1) In terms of hardware, the proposed system 
should be converted to a portable version. The acquired signal 
can be transferred to a mobile device by Bluetooth for later 
signal processing. Multiple ADW electrodes should be inte-
grated into one patch which is more convenient for users to 
attach and reduce position errors. 2) In terms of software, the 
proposed system should be improved to realize sentence-level 
speech recognition. The ML algorithm should identify each 
phoneme in a word and have the ability to construct new words 
using phonemes. Then the system should combine each recog-
nized word to output the sentence. We are currently working 
on an advanced ML model in this regard.

4. Experimental Section
Materials: WPU (UD-410, 35 wt%) was provided by Bond Polymers 

International. D-sorbitol (98%), ethylene glycol (EG), polyvinylpyrrolidone 
(PVP, average Mw 360000), PVP (average Mw 55000), iron (III) chloride 
(FeCl3), silver nitrate (AgNO3), and N,N-dimethylformamide (DMF) 
were purchased from Sigma-Aldrich. The self-adhesive silicone was 
obtained from Smooth-On, Inc. All materials and reagents were used as 
received.

Synthesis of AgNWs: AgNWs were fabricated using a modified polyol 
reduction method. The PVP solution was prepared by dissolving 0.72 g 
PVP (Mw 55000) and 0.72 g PVP (Mw 350000) into 50 mL EG followed 
by magnetic stirring at 500  rpm at 100°C until fully dissolved. The 
AgNO3 solution was prepared by dissolving 0.32  g AgNO3 into 50  mL 
EG and stirring for 5  min at 500  rpm. Then, the PVP solution was 
heated to 150 °C in an oil bath. FeCl3 solution (10  mL 600  µm in EG) 
was subsequently added to the PVP solution and stirred for 1  min at 
500  rpm. The AgNO3 solution was then added to the solution in the 
oil bath gradually and stirred for 1  min. The solution in the oil bath 
was allowed to sit in the oil bath at 150 °C. After 2.5 h, the solution 
was submerged in a room-temperature water bath to stop the reaction. 
Finally, AgNWs were purified with acetone and ethanol, respectively. The 
solution was centrifuged three times at 2000 rpm for 10 min to remove 
solvents, surfactants, and other impurities in the supernatant.

Preparation of EMG Electrodes: 5  g WPU solution was dried to get 
1.75  g solid PU films. 0.194  g D-sorbitol was added to 0.5  g DI water 
and stirred for 5 min at 500 rpm. Afterward, 6 g DMF and 1.75 g solid 
PU were added to the D-sorbitol solution and stirred for 12 h at 800 rpm 
until completely dissolved to get the DWD solution. The pattern 
mask was cut by a mechanical plotter (Silhouette, Cameo 4) and then 
laminated to a slippery tape liner attached to a glass substrate. AgNW/
ethanol solution was spray-coated over the masks using the airbrush 
(Master Airbrush, Model G222). After peeling off the pattern mask, 0.8 g 
DWD solution was coated on the AgNWs using a spin coater (Laurell, 
WS-650Mz-23NPPB) at 3000  rpm for 1  min to get the ADW thin film. 
The toner transfer paper (Pulsar PRoFX) was then attached to the ADW 
thin film to transfer the film to the toner transfer paper. Copper lead 
wires were attached to the end of the ring-shaped interconnection part 
by the silver epoxy. Finally, the self-adhesive silicone and silicone thinner 
(Smooth-On, United States) were mixed with a ratio of 10:1 and then 
drop-casted on the interconnection part of the electrode.

Characterizations: To evaluate the electrode-skin impedance, two 
electrodes were attached to the forearm skin at a distance of 8 cm. The 

impedance between two electrodes was measured using the impedance 
analyzer (Keysight, E4990A). The morphologies of prepared ADW 
electrodes were obtained by the scanning electron microscope (Hitachi, 
S-4800). The transmittance of ADW electrodes was conducted using a 
UV–vis Spectroscopy (Thermal Scientific, Genesys 30) with wavelengths 
from 350 nm to 700 nm.

The stress–strain curves of ADW electrodes were measured using 
the materials testing systems (MTS, 858 Mini Bionix II) at a speed 
of 10  mm  min−1. The load cell of the tensile stage has a resolution of 
0.001 N. The adhesion test of ADW electrodes was performed by the 
same materials testing system. Briefly, the rectangular ADW film of 
2 × 1  cm was attached to the pig skin horizontally and subjected to a 
perpendicularly delaminated speed of 10  mm  min−1. The force exerted 
on the electrodes during the delamination process was measured by 
the load cell of the tensile stage. The adhesion force was calculated by 
dividing the maximum stable force by the film width.[70]

EMG Signal Acquisition and Processing: Eight-channel EMG signals 
were acquired by attaching 8 ADW electrodes as active sensing 
electrodes and one ADW electrode as the ground electrode. The position 
of 8 ADW electrodes attached to the face and neck is shown in Figure 1b. 
Meanwhile, the ground electrode was attached to the collarbone. All 
electrodes were linked to the Bioamplifier (ADInstruments, Octal Bio 
Amp ML138) and a data acquisition system (AD Instruments, PowerLab 
8/30 ML 870). The software LabChart was used to collect all EMG 
signals at a sampling rate of 1 k  s−1. The signals were acquired with a 
bandpass filter between 10 to 500 Hz. Then, a bandpass digital filter with 
cutoff frequencies of 20 to 200 Hz was applied to further de-noise the 
signals. The SNR of the EMG signals was calculated using MATLAB and 
the following equation:[62]

SNR 10log 20logdB 10
signal

noise

2

10
signal

noise

A
A

A
A

= 





= 





 (1)

where Asignal is the root mean square of the EMG signals, Anoise is the 
root mean square of the noise. Signals acquired when the face and neck 
remained stationary were considered noises. In the experiments, EMG 
signals in the noisy environment were acquired in an environment with 
a noise of around 85 dB produced by a speaker. When the ambient noise 
reaches 80  dB, the recognition rate of audio-based speech recognition 
will decrease drastically.[38] EMG signals in the dark environment were 
acquired when all lights were turned off. The normal environment refers 
to an environment with sufficient light and a noise level under 45 dB.

Applications in AR and Healthcare: Schematic illustrations of the 
developed applications in AR and healthcare are shown in Figure 7. EMG 
signals acquired from the ADW electrodes were collected using the data 
acquisition system (PowerLab) and data acquisition software (LabChart). 
A plugin[71] for LabChart was then used to transfer the EMG signal to 
MATLAB in real time for ML-assisted EMG signal processing. It should 
be noted that the lip-reading ML model was pre-trained in MATLAB. After 
the lip-reading ML model recognized the input EMG signals, interpreted 
words were sent to the cloud of amazon web services (AWS) using the 
MQTT method. Then, the developed software (app on the iOS platform 
as discussed below) received the command by MQTT and performed 
the corresponding actions. MQTT was selected here because it is a 
wireless machine-to-machine network protocol. The developed software 
can receive the commands in real time with low power consumption. 
In terms of software development, Unity 3D and Xcode were used as 
development tools. Unity 3D was used to code and integrate each 
module for the software. Xcode was used for transforming a Unity 3D 
project into an app on the iOS platform. The AR app integrated AR 3D 
animation models (downloaded from the Adobe Mixamo website with 
permission) and the MQTT command transfer module (open-source 
project M2MqttUnity[72]). The healthcare app integrated the MQTT 
command transfer module, audio data (word pronunciations available 
from the Google translate website), and animated texts (downloaded 
from the Flexclip website with permission).

Statistical Analysis: EMG signals were acquired from four subjects 
(including one female and three males, aged between 20 and 30 years 
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old). The authors had complied with all relevant ethical regulations. 
The Stony Brook University provided guidelines for study procedures. 
Informed consent was obtained from all participants. After data 
acquisition, the data were segmented into every single trial, and features 
were calculated. LDA/SVM training programs were applied to get the 
classification results. Figures 5 and 6 and Figures S14–S21, Supporting 
Information summarize the recognition results of all four subjects. The 
results of 11 words from different viseme groups using the LDA and the 
SVM were 94.8% ± 0.035 and 90.5% ± 0.061, respectively. The results 
for nine pairs of similar words were 86.8% ± 0.053 and 82.6% ± 0.056 
when using the LDA and the SVM, respectively. The recognition accuracy 
was represented as mean ± standard derivation. Matlab was used as the 
software for the statistical analysis.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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