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A B S T R A C T

Audio commands are a preferred communication medium to keep inspectors in the loop of civil infrastructure
inspection performed by a semi-autonomous drone. To understand job-specific commands from a group of
heterogeneous and dynamic inspectors, a model must be developed cost-effectively for the group and easily
adapted when the group changes. This paper is motivated to build a multi-tasking deep learning model that
possesses a Share–Split–Collaborate architecture. This architecture allows the two classification tasks to share
the feature extractor and then split subject-specific and keyword-specific features intertwined in the extracted
features through feature projection and collaborative training. A base model for a group of five authorized
subjects is trained and tested on the inspection keyword dataset collected by this study. The model achieved
a 95.3% or higher mean accuracy in classifying the keywords of any authorized inspectors. Its mean accuracy
in speaker classification is 99.2%. Due to the richer keyword representations that the model learns from the
pooled training data Adapting the base model to a new inspector requires only a little training data from that
inspector Like five utterances per keyword. Using the speaker classification scores for inspector verification can
achieve a success rate of at least 93.9% in verifying authorized inspectors and 76.1% in detecting unauthorized
ones. Further The paper demonstrates the applicability of the proposed model to larger-size groups on a public
dataset. This paper provides a solution to addressing challenges facing AI-assisted human–robot interaction
Including worker heterogeneity Worker dynamics And job heterogeneity.
. Introduction

Safe, reliable civil infrastructure is a foundation for the nation’s
ocio-economic vitality. For example, the National Bridge Inventory has
19,588 bridges (Black, 2022) spatially distributed on over 4,000,000
iles of public roads (FHWA, 2020). The average daily traffic passing

he bridges is 4.627 billion (FHWA, 2022). However, 42% of the bridges
re over 50 years old, and over 55.1% are rated as fair or poor (ASCE,
021), meaning they have deteriorated. Stakeholders closely monitor
he health condition of bridges to assure the safety of passing traffic.
n response to the vast demand for bridge inspection and because
f the complexity of this mission, aerial robots such as drones have
een introduced to improve the time efficiency, worker safety, and
ost-effectiveness of inspection.

A human–robot system for a bridge inspection consists of an in-
pector and a drone. Their collaboration method directly impacts the
ystem’s job efficiency and task performance. For example, an inspector
ust possess the appropriate psychomotor, cognitive, and sensory abil-

ties to operate the drone manually using a hand controller throughout
he inspection (Li et al., 2022). The drone is preferred to be at least
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semi-autonomous with the inspector’s assistance or guidance in the
loop. Specifically, the drone can automatically perform inspection tasks
under predefined conditions, and the inspector will guide the drone or
take control of it only when a need is identified. For example, the drone
detects an area of concern nearby but off the pre-planned inspection
path for a task. The drone hovers there and sends a message to the
inspector. The inspector will judge and then tell the drone to continue
its current task or guide it to add an incremental task. Human–robot
interaction is essential when the robot is semi-autonomous with an
inspector in the loop.

Some types of guidance that inspectors give to a semi-autonomous
drone, such as triggering, terminating, and slightly modifying a task
that the drone is performing automatically, can be provided con-
veniently using a set of commands. There are different media for
communicating with the drone, such as speech commands, non-speech
commands, remote controllers, and hand gestures. Speech commands
have advantages over others because humans use them naturally in
daily communication. Therefore, the mapping between speech com-
mands and the drone’s actions is intuitive to inspectors. A model is
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required to analyze the inspector’s acoustic signals and classify the
command keywords so that the drone can understand the inspector’s
guidance. Compared to the literature, the application to the collab-
orative human–robot inspection of bridges has unique characteristics
or specifications. First, although only a small set of keywords is re-
quired, they are job-specific and not necessarily covered by existing
big datasets of speech commands. Therefore, training and refining the
model must be efficient, for instance, using a small sample of data
collected for any inspection job. Second, a stakeholder such as a State
department of transportation or a local transportation agency usually
has a group of inspectors who differ in their background, acoustic
characteristics, and speaking habits. The model must reliably recognize
the speech commands for a group of heterogeneous inspectors, ranging
from a few to tens. Third, the drone should only follow the instruction
of authorized inspectors, not other workers at the inspection site or
cyber attackers. That is, the model should be able to recognize and
verify the inspector. Last, the model can adapt to workforce dynamics
due to promotion, retirement, recruitment, and turnover. Robotic tech-
nology is proliferating in the industry, such as construction progress
inspection, underwater infrastructure inspection, post-disaster search
and rescue, aerial survey, military reconnaissance and surveillance, and
others. The need for keeping humans in the loop of a semi-autonomous
robot-assisted work and similar requirements for the speaker-keyword
classification model signify the urgency of exploring a tailored solution.
While the existing literature on speech command and speaker recogni-
tion address one or another need from some perspectives and in-depth,
no focused study has specifically addressed those needs of this new
engineering application.

Motivated by the above-discussed new capability that the collab-
orative human–robot inspection desires, this paper aims to develop a
model that can reliably classify spoken keywords and determine who
the speaker is if verified as an authorized inspector. Creating such a
model for any group of inspectors and any inspection job must be cost-
effective. When new inspectors join the group, refining the model to
add additional classes of speakers is convenient. If any inspectors leave,
their data still support the model and will not be obsolete. The remain-
der of the paper will detail the discussion. The next section summarizes
the related work. Then, Section 3 presents the proposed multi-tasking
model, followed by the implementation details in Section 4. After that,
Section 5 discusses results from experimental studies that demonstrate
the model performance and determine requirements for achieving the
performance. In the end, Section 6 concludes the study by summarizing
research findings and important future work.

2. The literature

The literature related to this paper includes keyword spotting or
speech command recognition, acoustic signal-based speaker recogni-
tion, and multi-tasking models that integrate the two tasks into a
unified model.

2.1. Keyword spotting and speech command recognition

Speech command is one of the media to deliver human instruction
to robots (Goodrich and Schultz, 2008). Compared to other media such
as hardware, gestures, and natural language, speech command is easier
to implement. Developing a reliable recognition system for simple
commands has had a sound methodological foundation. Therefore,
various applications have chosen speech command as the communi-
cation media, such as smart homes (Arriany and Musbah, 2016) and
air traffic control (Holone et al., 2015). Speech command recognition
for keeping inspectors in the loop of a semi-autonomous drone-assisted
civil infrastructure inspection has not been widely developed yet.

Along with the growing need for human–machine interaction, the
development of lightweight models for recognizing simple commands

is gaining growing interest. Keyword spotting is a small-scale speech
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recognition task identifying keywords from audio streams. Deep neural
networks have recently outperformed standard Hidden Markov Models
(HMMs) and become a new stream of speech command recognition
methods (Chen et al., 2014). For example, convolutional neural net-
works (CNNs) designed for keyword spotting showed more than 95%
accuracy on the Google speech command dataset (Tang and Lin, 2018;
Peter et al., 2022). Speech recognition studies can use either time-
domain or frequency-domain inputs. However, deep learning based on
frequency-domain inputs has been proven to be a better approach if
using a complex spectrogram to process audio signals (Nossier et al.,
2020). Mel-Frequency Cepstral Coefficients (MFCCs) used to be a viral
type of speech signal feature. Recently, filter banks are found to be
more attractive (Mukherjee et al., 2019). Various audio-related deep
learning models have widely used the Mel-spectrogram that applies a
frequency-domain filter bank to audio signals (e.g., Gong et al., 2021).

Speakers have unique voices and speaking habits. Therefore, speech
recognition models are classified into user-dependent and user-
independent models (Gaikwad et al., 2010). A dependent model is
created for one particular speaker, whereas an independent model is
for various speakers. Although a dependent model is easier to develop,
it is a nontransferable point solution. Maintaining many point solutions
is challenging in some real-world applications that have multiple model
users or users that can change quickly. Therefore, user-independent
models are the mainstream.

2.2. Speaker recognition

Instead of recognizing spoken words, speaker recognition focuses
on distinguishing speakers by their voices. As one of the biometrics to
distinguish people, voice has a high ease of use and implementation,
high user acceptance, and low cost compared to other higher accurate
biometrics such as fingerprint and retina (Hanifa et al., 2021). Speaker
recognition has two research streams, which are speaker verification
and identification. Speaker verification aims to test if a given voice
is from an authorized speaker. D-vector is a popular speaker rep-
resentation that is derived from a deep neural network for speaker
verification (Heigold et al., 2016). The d-vector of a test utterance
is compared to a speaker model that is generally given by averaging
over the d-vectors of the enrollment utterances. The cosine similarity
is a popular similarity measurement for the d-vector comparison. A
general speaker verification process is to compare the given voice to
the enrollment voices and make an accept or reject decision according
to a threshold. Speaker identification is to identify the speaker among
a set of known speakers from the given test voice.

Before the era of deep neural networks, Gaussian mixture mod-
els (Reynolds and Rose, 1995) and i-vector (Dehak et al., 2010) were
popularly used in speaker recognition. The main phases of speaker
recognition generally include pre-processing, feature extraction, mod-
eling, and classification. In the recent decade, motivated by the success
of deep learning, many deep neural networks for speaker recognition
investigated not only classification (e.g. Kenny et al., 2014) but feature
extraction, such as the d-vector method (Variani et al., 2014). Feature
extraction is the key to speaker recognition as it is supposed to extract
sufficient features of the input signal for better modeling (Chaudhary
et al., 2017). Bai and Zhang (2021) summarized methods of deep
speaker feature extraction. Converting raw data into acoustic features
and turning them into deep embeddings using CNN-based deep feature
extractors is becoming a major approach (Zhang et al., 2018; Yadav
and Rai, 2018; Wang et al., 2020; Garcia-Romero et al., 2020). Popular
acoustic features include spectrogram, Mel-spectrogram, and MFCC.
The CNN-based feature extractors are diverse, for example, TDNN,
ResNet, VGG, and Inception-ResNet. The study by Chung et al. (2018)
showed that the best performance on their test data is RestNet50, with
an error rate of 4.42%.

Past research observed a significant drop in speaker recognition

performance when the number of speakers increased. For example,
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the accuracy is 93.7% when the pool has 16 speakers, but it drops
to 81.7% when the pool size becomes 20 (Parveen et al., 2000). The
accuracy drops from 96% to 65.3% when the speaker increases from 5
to 30 (Chauhan and Chandra, 2017). Chauhan et al. (2019) proposed
an artificial neural network combining three different feature types,
which can keep the accuracy around 93% when the speaker number
increases from 20 to 30. Recently, deep neural networks trained on
large-scale datasets have achieved high accuracy. For example, each
of 630 speakers provided six phonetically rich sentences, and the data
were used to train a model that achieved 97.0% accuracy (Lukic et al.,
2016). Ye and Yang (2021) trained the model using 127,551 utterances
collected from 400 speakers, and the accuracy is 98.96%.

2.3. Multi-tasking models attained by joint training

Keyword classification and speaker recognition have been consid-
ered two related tasks, not only because speech commands contain pho-
netic features and speaker-identity information but because integrating
these tasks in a unified model is beneficial. The association of the two
tasks arises from various real-world applications. The study by Sigtia
et al. (2020) was motivated by the need to detect voice-triggering
phrases and verify if the speaker is a registered user. El Shafey et al.
(2019) aimed to recognize who says what and when in a conversation
setting. Personalized devices, such as hearing assistive devices, require
the ability to detect external speakers and prevent them from trigger-
ing the device. López-Espejo et al. (2020) developed a multi-tasking
keyword spotting model with the ability to detect non-users.

Joint training of keyword and speaker recognition as a unified
multi-tasking model usually has the following one or both benefits
over two independent models. First, the two tasks can share the data
processing and feature learning pipeline to some extent (Sigtia et al.,
2020; López-Espejo et al., 2020; Tang et al., 2016; Jung et al., 2020;
Hussain et al., 2022). Second, each can benefit from the improved
performance of the other (Tang et al., 2016; Jung et al., 2020). In
the study of Sigtia et al. (2020), two stacks of four LSTM layers
perform the voice trigger detection and the speaker verification tasks,
respectively. The two tasks share the first two layers without sacrificing
the accuracy compared to that achieved by two independent models.
The two tasks in Hussain et al. (2022) share the same wav2vec v2
backbone, and those in López-Espejo et al. (2020) share a residual
deep learning network for feature extraction. Through collaborative
training, Tang et al. (2016) developed a multi-tasking model for speech
and speaker recognition. The two tasks share a common front-end but
have their respective recurrent neural networks. The two networks are
connected at the task level to inform each other of the desired and
undesired information. The keyword spotting and speaker verification
tasks in Jung et al. (2020) share an enhancement network for noise
removal. The two tasks have their respective feature extractors, but
the acoustic feature extractor provides the phonetic conditional vector
to augment the speaker feature extractor’s ability. A pooling network
further integrates outputs from the two feature extractors to generate
the keyword and speaker embeddings.

Deep neural networks suffer from the catastrophic forgetting prob-
lem in class-incremental learning. This problem also challenges speech
recognition, for example, the incremental classes of new accents, new
words, or new acoustic environments (Fu et al., 2021). Li et al. (2020)
and Anand et al. (2019) proposed few-shot learning-based speaker
identification networks to handle new speakers. The effectiveness of
few-shot learning for adding new speakers in a speaker-keyword clas-
sification multi-tasking model is awaiting verification.

3. The model

Fig. 1 describes the desired AI model to append to the human–robot
system for bridge inspection. With that model, an authorized inspector
can guide or assist a semi-autonomous drone in operation using audio
commands. Nevertheless, the inspector can always take over the control

by operating the drone manually using a hand controller.

3

3.1. The rationale of the proposed model architecture

A simple method to build the desired capability of audio command
recognition in Fig. 1 is to collect sample keywords spoken by an
inspector and build a model to classify the keywords and verify if the
speaker is the authorized inspector. However, the model developed for
one inspector cannot be transferred to others for multiple reasons. In
the sample collected from an inspector, phonetic-specific features of
keywords may be incomplete and mixed with other features that corre-
late to keyword classes but are unique to the inspector. For example, an
inspector always speaks one keyword quickly and the other very slowly.
Speed can be a dominating feature in distinguishing the two keywords
that the inspector speaks. However, no other inspectors follow the same
pattern of speaking. The classification model learned from such features
is highly effective for that particular inspector but not others. There-
fore, every inspector has to have a dedicated model developed using
the inspector’s sample data, termed a point solution in this paper. When
the inspector is no longer an active worker, the inspector’s model and
data become obsolete. A method to address the mentioned limitations
would be training a unified model on a dataset collected from multiple
inspectors. In such a dataset, the sample of the same keyword has
more considerable inter-speaker variability than intra-speaker variabil-
ity. A portion of the inter-speaker variability positively contributes to
speaker classification, and another portion benefits keyword classifica-
tion by forming richer phonetic-specific features. If used appropriately,
the pooled data allow for extracting richer keyword-specific features,
learning speaker-identity features, and separating these reliably. From
this perspective, training a unified classification model for a group of
inspectors using the pooled data best utilizes data than training one
dedicated model for each inspector.

In order to learn and attain the ability to classify both speakers
and the keywords they spoke from the pooled training data, the model
architecture must be appropriate. While the two classification tasks can
have their respective feature extractors, sharing the feature extractor
would be more efficient. Inspectors’ acoustic signals contain rich infor-
mation (e.g., phonetic features, pitch, intonation, rhythm, and accent)
that can differentiate the keywords they speak and the speakers them-
selves. Therefore, a powerful feature extractor, like one based on deep
learning, can automatically learn comprehensive features useful for
both speaker and keyword classifications. Then, the two downstream
tasks learn to use the extracted features selectively to achieve their
respective missions. Furthermore, jointly training the two classifiers
would be necessary when the two tasks share a feature extractor.
The back-propagation process will refine the feature extractor to be
able to render the features that best support both tasks, not just a
particular one. In addition, two mapping functions may be able to
disentangle phonetic-specific and subject-specific features intertwined
in the extracted features for the two classification tasks. From the model
development perspective, including those two mapping functions may
not always be necessary because the two classifiers can be trained
directly on the extracted features. However, disentangling the extracted
features for the two classifiers would make it easier to maintain the
keyword classifier, update the speaker classifier to have incremental
classes, and explicitly monitor the split effectiveness for any individual
inspector in testing.

A single-user model can simply measure the similarity between an
input utterance with enrollment samples of the authorized user to verify
the speaker. However, speaker verification for the proposed multi-user
model cannot follow the same method, especially when the group size
of authorized inspectors is relatively large. Speaker classification scores
should be a good reference for speaker verification if the classification
result is reliable. Inter-subject variability is always present in people’s
voices and speaking habits, even for twins. Therefore, the speaker
classification model tends to be less confident about classifying an
unauthorized speaker into an authorized one. Nevertheless, the classi-

fication scores for authorized but hard-to-classify inspectors may have
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Fig. 1. Collaborative human–robot inspection of bridges enabled by an AI model for inspector and audio command recognition.
Fig. 2. The proposed Share–Split–Collaborate (S2C) multi-tasking framework for the speaker-keyword classification.
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𝑏𝑏
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𝑦𝑦

ℎℎ
similar pattern, and a method is needed to distinguish them from
nauthorized speakers.

The above-discussed rationale for the modeling approach moti-
ates the development of a unified multi-tasking deep learning model
ith a Share–Split–Collaborate (S2C) learning architecture trained on
ooled data. The remainder of this section further presents the speaker-
eyword classification model and the speaker verification method.

.2. The multi-tasking classification model

Suppose a group of 𝑀 inspectors, indexed by their identification
ID) number 𝑖, will use one unified model to communicate with a drone
or inspection using a set of 𝑁 keywords indexed by 𝑗. As Fig. 2 shows,
n input to the model is an utterance that lasts for a fixed time period, 𝑥𝑥𝑥.
he input utterance 𝑥𝑥𝑥 may come from one of the 𝑀 inspectors, which

s indicated by a one-hot encoded vector, 𝑦𝑦𝑦𝑠(∈ R𝑀 ). That is, at most
ne element of 𝑦𝑦𝑦𝑠 is one and all else is zero. If it exists, the element one
ndicates who the inspector is. 𝑥𝑥𝑥 may pertain to one of the 𝑁 keywords,
epresented by a one-hot encoded vector, 𝑦𝑦𝑦𝑤 ∈ R𝑁 . Given an input 𝑥𝑥𝑥,

the model predicts the speaker ID, 𝑦𝑦𝑦𝑠, and the keyword class, 𝑦𝑦𝑦𝑤, in
parallel.

Fig. 2 shows the proposed S2C deep learning architecture for the
multi-tasking classification model. The framework contains a data pre-
processing module, a deep feature extractor, two feature projection
networks, two classification networks, and four loss functions. Details
of these components and their relationship are introduced below.

3.2.1. Shared data pre-processing and deep feature extractor
A data pre-processing module converts each input utterance 𝑥𝑥𝑥 into a

Mel-spectrogram in size 3 × 224 × 224, a frequency-domain representa-
tion of the raw input data. The deep feature extractor is ResNet50 (He
et al., 2016), pre-trained on the ImageNet and transferred in for the
speaker-keyword classification tasks. ResNet50 extracts a feature map,
𝐹 (∈ R2048×7×7), from the Mel-spectrogram.
4

3.2.2. Feature disentanglement
A feature projection network in Eq. (1) attempts to split the subject-

specific feature vector, 𝑓𝑓𝑓 𝑠, from the extracted feature map 𝐹𝐹𝐹 :

𝑓 𝑠 = 𝐿(𝑊𝑊𝑊 𝑠,𝑝𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑠,𝑝), (1)

where the transformation matrix 𝑊𝑊𝑊 𝑠,𝑝(∈ R2048×2048) and the bias vector
𝑏𝑠,𝑝 ∈ (R2048) are the learnable parameters of the subject-specific feature
projection network, and 𝐿 reshapes the output feature map into the
feature vector 𝑓𝑓𝑓 𝑠(∈ R100352).

Similarly, the other projection network in Eq. (2) extracts the pho-
netic-specific feature vector, 𝑓𝑓𝑓𝑤(∈ R100352), from 𝐹𝐹𝐹 :

𝑓𝑤 = 𝐿(𝑊𝑊𝑊 𝑤,𝑝𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑤,𝑝), (2)

where 𝑊𝑊𝑊 𝑤,𝑝(∈ R2048×2048) and 𝑏𝑏𝑏𝑤,𝑝 ∈ (R2048) are learnable parameters
of the phonetic-specific feature projection network.

3.2.3. Speaker and keyword classifiers
Using the obtained subject-specific feature vector 𝑓𝑓𝑓 𝑠 as the input,

a network 𝑠 in Eq. (3), named speaker classifier, performs the clas-
sification task and yields the probabilistic prediction of speaker ID, 𝑦𝑦𝑦𝑠.
Specifically, the input 𝑓𝑓𝑓 𝑠 passes through two fully-connected layers and
an output layer in sequence to become the output 𝑦𝑦𝑦𝑠:

𝑦𝑠 = 𝑠(𝑓𝑓𝑓 𝑠;𝜙𝑠,1, 𝜙𝑠,2, 𝛾𝑠). (3)

𝜙𝑠,1 in Eq. (3) is the first fully-connected layer performing the
following operation:

ℎ𝑠,1 = ReLU(𝑊𝑊𝑊 𝑠,1𝑓𝑓𝑓 𝑠 + 𝑏𝑏𝑏𝑠,1), (4)

where the weight matrix 𝑊𝑊𝑊 𝑠,1(∈ R128×100352) and the bias vector 𝑏𝑏𝑏𝑠,1(∈
R128) are the learnable parameters, the activation function is a ReLU

ℎ
function, and the output is ℎℎ𝑠,1.
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𝜙𝑠,2 in Eq. (3) is the second fully-connected layer that performs the
ollowing operation:

𝑠,2 = S(𝑊𝑊𝑊 𝑠,2ℎℎℎ𝑠,1 + 𝑏𝑏𝑏𝑠,2), (5)

where 𝑊𝑊𝑊 𝑠,2(∈ R256×128) and 𝑏𝑏𝑏𝑠,2(∈ R256) are the learnable parameters,
he activation function S is a sigmoid function, and ℎℎℎ𝑠,2 is the output.

𝛾𝑠 in Eq. (3) is the output layer that turns the output from the second
ully-connected layer ℎℎℎ𝑠,2 into the probabilistic prediction of speaker ID
𝑠 with the following operation:

𝑠 = 𝜎(𝑊𝑊𝑊 𝑠,𝑜ℎℎℎ𝑠,2 + 𝑏𝑏𝑏𝑠,𝑜), (6)

here the weight matrix 𝑊𝑊𝑊 𝑠,𝑜(∈ R𝑀×256) and the bias vector 𝑏𝑏𝑏𝑠,𝑜(∈ R𝑀 )
re learnable parameters, and 𝜎 designates the soft-max function that
ormalizes the prediction scores as the probabilistic prediction.

The keyword classifier, 𝑤, is similarly defined in Eq. (7), which
urns the phonetic-specific feature vector 𝑓𝑓𝑓𝑤 into the probabilistic
rediction of keyword class, 𝑦𝑦𝑦𝑤:

𝑤 = 𝑤(𝑓𝑓𝑓𝑤;𝜙𝑤,1, 𝜙𝑤,2, 𝛾𝑤). (7)

here the first fully-connected layer 𝜙𝑤,1 is:

𝑤,1 = S(𝑊𝑊𝑊 𝑤,1𝑓𝑓𝑓𝑤 + 𝑏𝑏𝑏𝑤,1), (8)

he second fully-connected layer 𝜙𝑤,2 is:

𝑤,2 = S(𝑊𝑊𝑊 𝑤,2ℎℎℎ𝑤,1 + 𝑏𝑏𝑏𝑤,2), (9)

and the output layer 𝛾𝑤 is:

𝑦𝑤 = 𝜎(𝑊𝑊𝑊 𝑤,𝑜ℎℎℎ𝑤,2 + 𝑏𝑏𝑏𝑤,𝑜). (10)

Here, 𝑊𝑊𝑊 𝑤,1(∈ R512×100352), 𝑏𝑏𝑏𝑤,1(∈ R512), 𝑊𝑊𝑊 𝑤,2(∈ R512×512), 𝑏𝑏𝑏𝑤,2(∈ R512),
𝑊 𝑤,𝑜(∈ R𝑁×512), and 𝑏𝑏𝑏𝑤,0(∈ R𝑁 ) are the learnable parameters of the
keyword classifier.

If the projection network in Eq. (1) is effective, the subject-specific
feature vector 𝑓𝑓𝑓 𝑠 should be keyword-agnostic. That is, by entering 𝑓𝑓𝑓 𝑠
to the keyword classifier, the obtained output 𝑦𝑦𝑦𝑠𝑤,

𝑦𝑠𝑤 = 𝑤(𝑓𝑓𝑓 𝑠;𝜙𝑤,1, 𝜙𝑤,2, 𝛾𝑤), (11)

does not tell what keyword it is. That is, the ideal prediction result for
𝑦𝑠𝑤 is a uniform distribution [ 1

𝑁 ,… , 1
𝑁 ].

To check if the phonetic-specific feature vector 𝑓𝑓𝑓𝑤 is speaker-
agnostic, it can be entered into the speaker classifier to compare the
output 𝑦𝑦𝑦𝑤𝑠:

𝑦𝑤𝑠 = 𝑠(𝑓𝑓𝑓𝑤;𝜙𝑠,1, 𝜙𝑠,2, 𝛾𝑠), (12)

with its ideal result [ 1
𝑀 ,… , 1

𝑀 ]. The data flows for predicting 𝑦𝑦𝑦𝑠𝑤
and 𝑦𝑦𝑦𝑤𝑠 in Fig. 2 are dashed arrows, meaning that they are auxiliary,
acilitating in modeling training and testing.

.2.4. The loss function for collaborative training
The training dataset, 𝛺T = {𝑥𝑥𝑥(𝑘), 𝑦𝑦𝑦𝑠(𝑘), 𝑦𝑦𝑦𝑤(𝑘)|𝑘 = 1,… , 𝐾}, contains

𝐾 observations, where 𝑥𝑥𝑥(𝑘) is the input utterance indexed as 𝑘, 𝑦𝑦𝑦𝑠(𝑘)
is the one-hot encoding of the truth speaker ID, and 𝑦𝑦𝑦𝑤(𝑘) is the one-
hot encoding of the truth keyword class for 𝑥𝑥𝑥(𝑘). The proposed model
predicts the speaker ID 𝑦𝑦𝑦𝑠(𝑘) and the keyword class 𝑦𝑦𝑦𝑤(𝑘). The goal of
model training is to fit the deep feature extractor, the two projection
networks, and the two classifiers, which is achieved by minimizing the
loss function, , in Eq. (13):

 = 𝑠 + 𝑤 + 𝑠𝑤 + 𝑤𝑠, (13)

which consists of four components.
𝑠 in Eq. (13) is a cross-entropy loss measuring the inaccuracy in

classifying speakers by the subject-specific feature vector,

𝑠 = −
𝐾
∑

⟨𝑦𝑦𝑦𝑠(𝑘), log �̂�𝑦𝑦𝑠(𝑘)⟩, (14)

𝑘=1
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where ⟨, ⟩ stands for the inner product of two vectors. 𝑤 in Eq. (13)
is also a cross-entropy loss measuring the inaccuracy in classifying
keywords by the phonetic-specific feature vector,

𝑤 = −
𝐾
∑

𝑘=1
⟨𝑦𝑦𝑦𝑤(𝑘), log �̂�𝑦𝑦𝑤(𝑘)⟩. (15)

𝑠𝑤 in Eq. (13) is the mean squared errors that regulates the subject-
specific feature vector to be keyword-agnostic, and this measurement
is based on the Euclidean distance between the prediction 𝑦𝑦𝑦𝑤𝑠 and its
ideal score:

𝑠𝑤 = 1
𝐾

𝐾
∑

𝑘=1
‖𝑦𝑦𝑦𝑠𝑤(𝑘) − 1∕𝑁‖

2
2. (16)

imilarly, 𝑤𝑠 regulates the phonetic-specific feature vector to be
ubject-agnostic,

𝑤𝑠 =
1
𝐾

𝐾
∑

𝑘=1
‖𝑦𝑦𝑦𝑤𝑠(𝑘) − 1∕𝑀‖

2
2. (17)

.3. Inspector verification

Given an input utterance 𝑥𝑥𝑥 (∉ 𝛺T), the classification model pre-
ented in Section 3.2 renders the speaker classification scores �̂�𝑦𝑦𝑠 that
easure the probabilities of being any of the 𝑀 speakers. If the

peaker classification is highly reliable, the result is useful information
or speaker verification. Therefore, a verification module is further
eveloped, which directly uses the speaker classification result to verify
f the speaker is in the pool of authorized inspectors. That is, the
peaker verification module uses 𝑦𝑦𝑦𝑠 to provide the verification result
𝑦𝑣 ∈ [‘Authorized’, ‘Unauthorized’].

In predicting the class of an unauthorized speaker, the speaker
classifier is likely to render prediction scores 𝑦𝑦𝑦𝑠 less capable of distin-
guishing speakers. A measure, 𝜆𝑣, defined as the ratio of the highest
score 𝑦(1)𝑠 to the second highest score 𝑦(2)𝑠 of 𝑦𝑦𝑦𝑠,

𝜆𝑣 = �̂�(1)𝑠 ∕�̂�(2)𝑠 , (18)

quantifies the minimum relative strength of the top-ranked prediction
score and infers the confidence of predicting the speaker as the one
with the highest score 𝑦(1)𝑠 . 𝜆𝑣 takes values within the range [1,∞). The
larger the value, the stronger the belief in the top-scored prediction. A
threshold must be defined appropriately to differentiate unauthorized
speakers from authorized inspectors according to 𝜆𝑣.

This paper proposes a simple method in Eq. (19) for defining a
classification threshold, 𝜆, based on the speaker classification results
on the training dataset:

𝜆 = 1
𝐾

𝐾
∑

𝑘=1

1
var[�̂�𝑦𝑦𝑠(𝑘)]

(19)

here var[�̂�𝑦𝑦𝑠(𝑘)] designates the variance of �̂�𝑦𝑦𝑠(𝑘), the classification
cores for the person spoken the input utterance 𝑥𝑥𝑥(𝑘) ∈ 𝛺T. A small
ariance indicates difficulty in trusting the prediction to be the top
corer. Eq. (19) indicates the threshold 𝜆 is dependent on the pool of
uthorized inspectors. First, 𝜆 is smaller if authorized inspectors are
asier to classify. Second, a straightforward derivation further shows
he threshold 𝜆 takes a value within the range [𝑀 + 1 + 1

𝑀−1 ,∞), and
he lower boundary of the threshold value 𝑀 +1+ 1

𝑀−1 is approaching
𝑀 + 1 as 𝑀 increases. That is, the lower boundary increases with the
number of authorized inspectors in the pool. The explicit dependency
of the classification threshold 𝜆 on the pool of authorized inspectors
makes the verification adaptive to various groups of inspectors in any
inspection jobs.

By comparing the ratio value obtained in Eq. (18) to the threshold
value defined in Eq. (19), the speaker verification result is determined:

𝑦𝑣 =
{

‘Authorized’, if 𝜆𝑣 ≥ 𝜆; (20)
‘Unauthorized’, otherwise.
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Table 1
The list of keywords in an inspection job.

Category Keywords

Wakeup ‘‘BIRDS’’
Assignment ‘‘Task’’, ‘‘One’’, ‘‘Two’’, ‘‘Three’’, ‘‘Four’’
Adjustment ‘‘Backward’’, ‘‘Continue’’, ‘‘Hover’’, ‘‘Stop’’

4. Implementation details

The study collected data from a training program to implement the
model proposed in Section 3. This section discusses the details of the
data collection, model training, and model adaptation. The dataset (in
the format of Mel-spectrogram, spectrogram, and MFCC) and source
codes are available for download from the project webpage (Li, 2022).

4.1. The data

The study collected inspection command data spoken by eight sub-
jects. They were receiving training to guide a semi-autonomous drone
in performing a bridge inspection job that consists of four tasks using
a virtual reality-based training system (Li et al., 2022). In this study,
the drone can automatically perform four inspection tasks by flying
along the pre-planned routes of the tasks with GPS-based navigation
and fundamental obstacle avoidance functions. An inspector triggers
the start and termination of tasks and guides the drone to have certain
deviations from the pre-planned tasks. Ten keywords in three categories
were collected and summarized in Table 1. ‘‘BIRDS’’ is the drone’s
name used as the wake-up command for triggering the communication
with the drone. The communication is on until a silence of over two
seconds is detected. The inspector uses the command ‘‘Task 𝑖’’ (𝑖= One,
Two, Three, Four) to let the drone start a specific task. Therefore, five
keywords fall in the category of assignment commands. Four additional
single-word commands allow the inspector to modify the automatic
inspection mode. The inspector can use the command ‘‘Backward’’ to
ask the drone to move reversely along the pre-defined path. The drone
will stay still if it receives the command ‘‘Hover’’. The drone will
continue to perform the uncompleted task automatically if the inspector
says the command ‘‘Continue’’. The command ‘‘Stop’’ will terminate
the current task and let the inspector take control of the drone. This
list of keywords is an example developed based on one inspection job.
Any inspection job with unique specifications can have its commands
created, which can flexibly include special words not found in daily
communication.

Half of the eight subjects in this study are female, and the other half
are male. All subjects repeated each of the ten keywords about fifty
times. Utterances of keywords were extracted from the recorded audio
signals, each lasting 1.5 s. The utterances were all transformed into Mel-
spectrogram images. Fig. 3 illustrates one sample image of each key-
word spoken by each of the eight subjects. The intra-row similarity and
inter-row dissimilarly are observed, which evidences phonetic-specific
features. The intra-row dissimilarity and the consistency across rows
indicate that subject-specific features are present and phonetic-specific
features from a single subject are probably incomplete.

4.2. Model training

The model proposed in Section 3.2 was trained, validated, and
tested for a group of five subjects. The data is split into three subsets
for three purposes: training (60%, ∼30 utterances/keyword/subject),
validation (20%, ∼10 utterances/keyword/subject), and testing (20%,
∼10 utterances/keyword/subject). Developing a satisfying model does
not necessarily use up all the training data. Section 5.1 will discuss
the requirement for the training data size. The optimizer Adam was
used for model training. The scheduler applies an exponential decay
function to the optimization step, given a provided initial learning
6

rate of 1e-4. The model training went with two stages. In the first
stage, the feature extractor pre-trained on ImageNet was frozen, and
the other four networks were trained from scratch for up to ten epochs.
In the second stage, the feature extractor was unfrozen, and all five
networks were refined for up to ten epochs. Each training stage may
be terminated earlier if the validation accuracy is no longer improved
for at least five epochs. The model that achieves the lowest loss on the
validation dataset from the second stage is selected for use.

4.3. Model adaptation to inspector changes

If any inspectors left the worker group (e.g., retirement and
turnover), they become inactive users of the model. Regarding these
changes, the speaker-keyword classification model does not require
any change. A speaker recognized as an inactive inspector will not be
able to communicate with the drone. However, updating the model
is necessary if new inspectors join the group (e.g., new hires or
contractors). The primary reason for updating the model is that the
speaker classification network needs to handle new classes. Updating
other model components (i.e., the feature extractor, the feature projec-
tion networks, and the keyword classification network) is unnecessary
because they work for any individual. However, the additional training
data collected from new inspectors may further improve the model’s
ability to extract features and classify keywords, mainly when the
original training dataset contains only a small number of inspectors.

This study hypothesizes that incremental learning for adding new
classes to the speaker classifier requires less data than training the
initial model. Therefore, only five utterances of each keyword from
each new inspector are added to the training data. Experiments in
Section 5.3 validate that this small amount is sufficient. In the model
calibration, the phonetic-specific feature projection network, the key-
word classifier, and the feature extractor will use their current weights
as the initial values. The underlying rationale is that those networks are
at least near-optimal before the calibration, and the updated training
dataset may help refine them to become optimal. However, the subject-
specific feature projection network and the speaker classifier will use
randomly assigned weights as the initial values. Re-training these two
networks from scratch would avoid the issue of forgetting existing
inspectors when learning to recognize new ones.

5. Results and discussion

This section presents nine experiments verifying the proposed
model’s functionality and merits. Results are analyzed and discussed
below.

5.1. Model development efficiency

The first experiment studied the requirements on training data size
and so the training time for achieving satisfying classification accu-
racy. The experiment consists of four speaker-keyword classification
models trained and tested on the inspection keyword data collected
from five subjects (sub1∼sub5), which differ in the training data size
(utterances/keyword). Table 2 compares the four models on the mean
training time and mean classification accuracy based on 10 times of
training and testing. The interval estimates are of 95% confidence,
and the small margins of error indicate the reported measurements are
stable. The dataset for training the first model contains 10 utterances
per keyword from each of the five subjects, indicated by a vector (10,
10, 10, 10, 10). The overall mean accuracy of keyword classification is
0.951 ± 0.003, and the average accuracy at the subject-level ranges
from 0.878 to 0.991. The overall mean accuracy of speaker classifi-
cation is 0.969 ± 0.004, and the average accuracy of recognizing a
specific subject ranges from 0.917 to 0.997. The model’s ability to
analyze subject #2 is clearly lower than that for others. Subject #2
seems quite different than others by looking at Fig. 3. To improve
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Fig. 3. Mel-spectrogram samples of ten keywords spoken by eight subjects (sub1∼sub8).
Table 2
Impact of training data size on the mean training time and the mean accuracy of speaker-command classification.

Trn. data size Estimate of mean Estimate of mean accuracy in keyword classification Estimate of mean accuracy in speaker classification

(utterances/keyword) Trn. time (s) sub1 sub2 sub3 sub4 sub5 Overall sub1 sub2 sub3 sub4 sub5 Overall

(10,10,10,10,10) 45 ± 1 0.946 0.878 0.966 0.977 0.991 0.951 ± 0.003 0.994 0.917 0.977 0.959 0.997 0.969 ± 0.004
(20,20,20,20,20) 57 ± 3 0.970 0.927 0.988 0.988 0.999 0.974 ± 0.003 0.991 0.987 0.992 0.987 1.000 0.991 ± 0.002
(20,30,20,20,20) 63 ± 3 0.973 0.953 0.989 0.988 1.000 0.980 ± 0.002 0.984 0.999 0.993 0.986 1.000 0.992 ± 0.001
(30,30,30,30,30) 74 ± 4 0.985 0.958 0.989 0.988 1.000 0.984 ± 0.002 0.982 0.994 0.997 0.990 1.000 0.993 ± 0.001

Note: The first column states the data size (utterances/keyword) collected from subjects #1, #2, #3, #4, and #5, respectively.
The value added after the sign of ‘‘±’’ stands for the margin of error, calculated based on ten repeats and at the level of significance 5%.
the accuracy in analyzing the audio commands for subject #2, the
second model is developed by doubling the training data. This time,
the average accuracy in classifying the keywords for subject #2 is
effectively increased to 0.927, and the average accuracy of recognizing
subject #2 is increased to 0.987. If 0.95 is a desired accuracy level,
the second model has not achieved a satisfying accuracy in classifying
the keywords for subject #2, which motivated the third model that
added additional 10 utterances of each keyword from subject #2 to
the training data. This time, the keyword classification accuracy is at
least 0.953 for every subject and the speaker recognition accuracy is
at least 0.984. Compared to the fourth model that uses 30 utterances
per keyword from all subjects, the third model is developed with less
training data, shorter training time, but comparable performance.

A series of two-sample t-tests assuming equal variances were per-
formed to verify the observed changes in classification accuracy due
to increases in the training data size. When the training data size
increases from 10 utterances per keyword to 20, the changes in the
mean accuracy in classifying keywords for the five individuals are
evidenced by the p-values ranging from 0.000∼0.017, and the changes
in the mean accuracy in recognizing them are evidenced by the p-values
ranging from 0.000∼0.087. When extra 10 utterances per keyword from
subject #2 are further added to the training dataset, the change in the
mean accuracy of keyword classification for this subject is statistically
significant with the 𝑝-value equal to 0.000.

Therefore, in the remainder of the paper, the third model, trained
using 30 utterances per keyword from subject #2 and 20 utterances
per keyword from the other four subjects, is used as the base model for
further discussion. Training the base model is efficient because the 95%
confidence interval for the mean training time is 63 ± 3 s. Transferring
the pre-trained ResNet50 into this study as the deep feature extractor is
an important reason for achieving time efficiency. The inference speed

of the base model is reasonable, about 0.11 s per Mel-spectrogram
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image. Adding the required time to convert an utterance into a Mel-
spectrogram, which takes about 0.03∼0.04 s, the speed for analyzing
acoustic signals is about 7 utterances per second.

5.2. Benefits of pooled training data

The inter-subject variance of a keyword’s feature vector is always
present. Therefore, a model trained on a big volume of data collected
from just one subject would not be effective for classifying the same
set of keywords for other subjects. Pooling the data from a group
of subjects has two advantages. On one hand, it allows for learning
richer keyword representations. On the other hand, the inter-subject
difference can be utilized to differentiate subjects. As a result, a unified
model can be developed from the pooled data to substitute a set of point
solutions that each is dedicated to one subject. The second experiment
aims to verify the benefits of pooled training data, which consists of 18
models in 6 groups. The first column in Table 3 shows the experiment
design. The first 15 models (5 subjects × 3 levels of data size) are point
solutions trained on the data collected from one subject and the last
3 models were trained on pooled data at 3 levels of data size. Each
model was trained and tested 10 times. Table 3 summarizes the average
accuracy of keyword classification for each subject, and Fig. 4 compares
the distribution of classification accuracy of those models using box
plots.

Fig. 4(a) presents the keyword classification accuracy of 15 models
that each was trained on the data collected from subject #1 and tested
on all five subjects. The sizes of training data experimented with are
10, 20, and 30 utterances per keyword, respectively. Those box plots
show that models trained on the data collected from subject #1 only
perform well on that subject, not others. When the training data size
is 10 utterances per keyword, the average accuracy in classifying the
keywords for subject #1 is 0.937 but ranges from 0.341 to 0.630 for

others. Increasing the sample size helps further improve the accuracy
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Fig. 4. Comparison of models trained on one subject’s data vs. on pooled data from the group (training sample size are in utterances per keyword).
Table 3
Effectiveness of pooled training data.

Trn. data sizea Avg. accuracy of keyword classificationb

(utterances/keyword) sub1 sub2 sub3 sub4 sub5

(10, 0, 0, 0, 0) 0.937 0.341 0.515 0.604 0.630
(20, 0, 0, 0, 0) 0.983 0.378 0.565 0.649 0.633
(30, 0, 0, 0, 0) 0.998 0.428 0.570 0.694 0.663

(0, 10, 0, 0, 0) 0.219 0.848 0.319 0.335 0.272
(0, 20, 0, 0, 0) 0.246 0.911 0.311 0.319 0.286
(0, 30, 0, 0, 0) 0.286 0.938 0.346 0.392 0.316

(0, 0, 10, 0, 0) 0.516 0.396 0.993 0.635 0.622
(0, 0, 20, 0, 0) 0.481 0.380 0.993 0.668 0.665
(0, 0, 30, 0, 0) 0.492 0.358 0.992 0.691 0.647

(0, 0, 0, 10, 0) 0.567 0.414 0.609 0.975 0.643
(0, 0, 0, 20, 0) 0.562 0.397 0.574 0.984 0.691
(0, 0, 0, 30, 0) 0.598 0.471 0.627 0.990 0.711

(0, 0, 0, 0, 10) 0.488 0.328 0.583 0.688 0.963
(0, 0, 0, 0, 20) 0.502 0.289 0.588 0.686 0.989
(0, 0, 0, 0, 30) 0.532 0.252 0.616 0.733 0.986

(6, 6, 6, 6, 6) 0.935 0.821 0.940 0.941 0.966
(10, 10, 10, 10, 10) 0.946 0.878 0.966 0.977 0.991
(20, 30, 20, 20, 20) 0.973 0.953 0.989 0.988 1.000

aThe first column shows utterances/keyword from subjects #1, #2, #3, #4, and #5,
respectively.
bBased on ten repeated training and testing.

in classifying the keywords for subject #1 (F-value for the one-way
ANOVA test is 126.6), but not for others (F-values is less than 14.8). For
example, when the training data size is tripled, the average accuracy
in classifying the keywords for subject #1 increases to 0.998, but the
improvement for other subjects is 0.09 or less, far below a satisfying
level. Observations from Fig. 4(a–e) are consistent, indicating point
solutions for individual subjects are non-transferable, regardless of the
training sample size.

Fig. 4(f) presents the keyword classification accuracy of the three
unified models trained on the pooled data of the group and tested
on each of the five subjects in the group. Three sample sizes were
experimented with: (i) 6 utterances per keyword from each of the five
subjects, (ii) 10 utterances per keyword from each subject, and (iii) 30
utterances per keyword from subject #2 and 20 from all other subjects.
The figure shows that the model trained on pooled data can classify all
subjects’ keywords properly even when the training dataset contains
only 6 utterances per keyword from each subject. Table 3 shows that,
when the training data size is 6 utterances per keyword per subject, the
average accuracy in classifying the keywords for subject #2 is 0.821
8

and at least 0.935 for other subjects. The performance of keyword
classification could be largely improved by using more training data.
The last model in Table 3 is the base model, which achieves 0.953 or
higher average accuracy in classifying the keywords at the subject level.

5.3. Model adaptability to new inspectors

When a new inspector is joining a small group of inspectors, collect-
ing a small amount of additional training data from the new inspector
would be necessary to adapt the model to the new inspector. The third
experiment of this study aims to evaluate the requirement on additional
training data. The base model was respectively adapted for each of the
three remaining subjects (i.e., sub6∼sub8) using two sizes of training
data: 5 and 10 utterances per keyword from the new subject. Results
are summarized in Table 4 and visualized in Fig. 5. The base model’s
accuracy in classifying the keywords for subject #6 is 0.700. When
subject #6 became a new inspector, the base model was calibrated by
adding just 5 utterances per keyword collected from subject #6 to the
training dataset. The accuracy of the calibrated model in classifying the
keywords for subject #6 becomes 0.970, and the classification accuracy
for the existing five subjects has no significant change. If subject #7
is the new inspector, collecting 10 instances per keyword from the
subject to calibrate the model effectively increases the accuracy from
0.464 to 0.968. Collecting 5 instances per keyword from subject #8
can adapt the base model to this subject, manifested by the increase of
the accuracy from 0.267 to 0.990. Fig. 5 shows that the additional 5
to 10 utterances per keyword from the new subject are also sufficient
for the model to obtain the ability to recognize the new subject’s
spoken keywords with an accuracy near 1 without forgetting its ability
to analyze the existing subjects. The study verifies the efficiency and
effectiveness of model adaptation for adding new inspectors. Fig. 5 and
Table 4 also indicate that a model’s ability to classify keywords for
unauthorized subjects would increase if more subjects are included in
the training data. For example, the base model’s accuracy in classifying
the keywords for subject #8 is 0.267. After the base model is adapted
to the bigger group that consists of subjects #1∼#6, the accuracy of the
updated model in classifying the keywords for subject #8 is increased to
0.336. The observation indicates that phonetic-specific features learned
on a big dataset with a large of group speakers should generalize well.
Therefore, the model adaptation on a public dataset with more subjects
is further examined in a later section.

5.4. Effectiveness of inspector verification

The study continued with the fourth experiment that used the base

model to illustrate the effectiveness of the inspector verification method
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Fig. 5. Keyword classification accuracy of the base model and the two adapted for a new subject using 5 vs. 10 utterances/keyword from the new subject. The base model is
rained on the pooled data of subjects #1∼#5, and subjects #6∼#8 are new subjects.
Table 4
Model adaptation for adding new subjects: Keyword classification accuracy for existing and new subjects.
Additional Trn. data Existing subjects New subjects

Source (utterances/keyword) sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8

sub6 5 0.973 0.981 0.991 1.000 1.000 0.970 0.632 0.336
10 0.955 0.972 0.991 1.000 1.000 0.980 0.648 0.316

sub7 5 0.973 0.981 0.991 1.000 1.000 0.760 0.936 0.287
10 0.973 0.981 0.982 1.000 1.000 0.760 0.968 0.297

sub8 5 0.964 0.981 0.991 1.000 1.000 0.580 0.648 0.990
10 0.973 0.981 0.991 1.000 1.000 0.650 0.664 1.000

Base model 0.973 0.963 0.982 0.990 1.000 0.700 0.464 0.267
Table 5
Statistics of the ratio value 𝜆𝑣 for inspector verification.
Subject ID Test sample size 𝜆𝑣 distribution 1{𝜆𝑣 > 𝜆}

Min Q1 Q2 Q3 Max Mean Count Percent

1 111 1.095 40.398 71.524 103.043 131.426 70.622 106 95.5%
2 108 1.233 47.204 85.793 123.482 160.728 82.809 104 96.3%
3 115 1.988 14.839 39.180 54.645 72.526 36.808 102 88.7%
4 109 1.801 24.304 37.871 48.019 64.243 35.426 101 92.7%
5 100 3.641 37.738 49.482 57.686 81.912 46.321 97 97.0%
6 100 1.033 1.846 3.726 11.555 49.508 8.560 36 36.0%
7 125 1.003 1.390 2.984 5.802 33.536 5.554 28 22.4%
8 101 1.007 1.439 2.258 4.408 18.673 3.581 14 13.9%
Table 6
The confusion matrix of the base model’s inspector verification result.

Prediction

Authorized Unauthorized Total

Ground truth Authorized 510 33 543
Unauthorized 78 248 326

Total 588 281 869

proposed in Section 3.3. In this experiment, subjects #1∼#5 are au-
thorized inspectors, and subjects #6∼#8 are unauthorized ones. The
threshold 𝜆 that Eq. (19) calculates for the base model is 7.048, close to
ts lower boundary of 6.25. If the ratio value 𝜆𝑣 that Eq. (18) calculates

based on a speaker classification result is greater than 𝜆, the inspector
is predicted as an authorized inspector. The test data of the eight
subjects are used to assess the performance of the inspector verification
method. Table 5 summarizes the distribution of the ratio 𝜆𝑣 for each
ubject. In total, 869 keyword utterances are tested, with 543 from
he authorized inspectors and 326 from the unauthorized speakers. The
tatistic measurements of 𝜆𝑣 in Table 5 clearly differentiate the two
roups of subjects, verifying the rationale of using the ratio 𝜆𝑣 as a

measurement for inspector verification.
Table 6 further presents the confusion matrix of inspector verifi-

cation. 510 out of the 543 utterances from the authorized inspectors
are predicted correctly, indicating the chance that the base model
can correctly verify authorized inspectors is 93.9%. 248 out of 326
utterances from the unauthorized inspectors are predicted correctly,
which means the chance of successfully detecting an unauthorized
speaker is 76.1%. As a result, the precision of inspector verification is
9

86.7% (=510/588), and the precision of unauthorized speaker detec-
tion is 88.3% (=248/281). The result in Table 6 indicates the proposed
inspector verification method is effective. A model user can use the
threshold recommended by Eq. (19) as a starting point and adjust it
according to the specific situation of implementation. For example,
slightly increasing the threshold value 𝜆 allows to increase the sensi-
tivity of detecting unauthorized speakers, but it lowers the accuracy
in verifying authorized inspectors. The lowered verification accuracy
for authorized inspectors can be improved by adopting a temporal
coherence analysis that verifies a speaker according to a sequence of
acoustic inputs from the speaker rather than a single input.

5.5. Impacts of larger group sizes

To demonstrate the applicability of the proposed speaker-keyword
classification model to groups in larger sizes, an online audio dataset
(Becker et al., 2018) is analyzed. This dataset includes 30,000 utter-
ances of digits 0∼9 collected from 60 different speakers who spoke
every digit 50 times. The fifth experiment of this study, which is
based on this spoken digit dataset, attempted to compare the keyword
classification accuracy for authorized and unauthorized subjects and
determine if having more authorized subjects in the training dataset
would effectively reduce the difference between the two groups. Firstly,
an initial model was developed for a group of 5 subjects. To keep
consistent with the inspection command example in this paper, the
dataset for training this classification model used the same data size.
That is, the initial training dataset contains 20 utterances per keyword
from each of the five subjects. The validation dataset and the test
dataset respectively have 10 utterances per keyword from the subjects.
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Fig. 6. 95% confidence interval of the mean accuracy in classifying keywords at the individual level: authorized subjects vs. unauthorized subjects.
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he initial group of authorized subjects was expanded by adding one
ubject at once until reaching the size of 30 authorized subjects. When
dapting the model to a new subject, 5 utterances per keyword from
he subject were added to the training dataset to calibrate the model.
n total, 26 models were developed, from a 5-subject group to a 30-
ubject group. Subjects whose data are included in the training dataset
re called the authorized group and those whose data are not included
re the unauthorized group. In this experiment, subjects 51∼60 form a
roup of 10 unauthorized subjects.

To verify that the keyword classification accuracy is not negatively
ffected by the increasing number of authorized subjects, the 95% con-
idence intervals of each model’s keyword classification accuracy for
uthorized subjects and unauthorized subjects are respectively shown
n Fig. 7. The average accuracy in classifying the keywords spoken
y the authorized subjects is near 1, and adding more and more
ubjects to the group does not change the average accuracy of keyword
lassification. The initial model’s average accuracy in classifying the
eywords spoken by unauthorized speakers is 0.927. It demonstrates
growing trend if the number of authorized subjects in the training

ataset increases, reaching 0.975 when the size reaches 30 subjects.
ubjects #52, #57, and #60 are the three unauthorized subjects whose
poken keywords are classified by the initial model with 0.86∼0.88

accuracy. When the number of authorized subjects is increased to 30,
the mean accuracy in classifying the keywords of subjects #57 and #60
is 0.89, but it is 1 for subject #52. The difference between the two
groups’ average accuracy is anticipated to diminish when the training
dataset covers data from more and more subjects. However, the interval
estimate of the mean classification accuracy for the unauthorized group
is wider than that for the authorized group. Fig. 6 confirms that pooling
data from more subjects would reduce the gap of mean accuracy in
keyword classification between the two groups, but not the difference
in their variances. To achieve a reliable keyword classification result,
it is recommended to include a small sample of training data from any
new inspectors when the training dataset is not diverse enough.

The literature has shown that classifying speakers will become more
challenging when the number of authorized inspectors keeps increas-
ing. But this difficulty can be addressed by collecting more training data
from the incrementally added subjects. The sixth experiment focused
on verifying this hypothesis. Fig. 7 shows the estimated mean value
of subject-level speaker classification accuracy and the 95% confidence
interval under two scenarios: the training data contains 5 versus 20
utterances per keyword from each incrementally added subject. When
only 5 utterances per keyword are collected from each sequentially
added subject, the mean accuracy clearly demonstrates a decreasing
trend when the number of authorized subjects increases, and the inter-
val estimate becomes wider. If more training data are collected from
newly added subjects, the decreasing trend of mean accuracy slows

down and the interval estimate becomes narrower. Fig. 7 implies that
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Table 7
Comparison of pre-processed acoustic features on 95% confidence interval estimates of
mean training time and mean classification accuracy.

Acoustic feature Mean training time Mean classification accuracy

Keywords Speakers

Mel-Spectrogram 63 ± 3 0.980 ± 0.002 0.992 ± 0.001
Spectrogram 62 ± 4 0.945 ± 0.005 0.944 ± 0.004
MFCC 64 ± 4 0.950 ± 0.004 0.951 ± 0.004

adapting the speaker-keyword classification model to a larger group of
subjects may require more training data due to the increasing challenge
of classifying speakers in a larger group.

5.6. Assessment of the modeling approach

This section illustrates additional experiments to compare the pro-
posed modeling approach to alternatives in prior work, mainly from
the aspects of data pre-processing, feature extraction, and speaker
verification.

5.6.1. Data pre-processing methods
The literature review in Section 2.2 shows converting the raw data

in the time domain into an acoustic feature in the frequency domain
and then turning it into deep embedding using a convolutional neural
network (CNN)-based deep feature extractor is gaining growing atten-
tion. The literature shows acoustic features in the frequency domain
contain richer information than the raw data in the time domain. The
seventh experiment compared three data pre-processing methods that
respectively yield the following three types of acoustic features: Mel-
Spectrogram, Spectrogram, and MFCC. Mel-Spectrogram is what the
proposed model uses. Table 7 compares the use of these three pre-
processed inputs by the base model (see Section 5.1). The 95% interval
estimates of the mean training time and mean classification accuracy
are based on ten times of model training and testing. Table 7 shows that
different types of pre-processed inputs do not differentiate the mean
training time, but Mel-Spectrogram surpasses Spectrogram and MFCC
on the mean classification accuracy, manifested by an increase in the
average keyword classification accuracy for 3∼3.5% and an increase in
the mean speaker classification accuracy for 4.1∼4.9%.

.6.2. Feature extractors
The eighth Experiment further compared three commonly used

eature extractors in the literature: ResNet, VGG, and Inception-ResNet,
n the base model. Table 8 summarizes the 95% confidence interval
stimates of mean training time and mean classification accuracy based
n 10 times of training and testing. ResNet50 is the feature extrac-
or used in our proposed model, which achieves the highest average
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Fig. 7. 95% confidence interval estimates of the mean accuracy in classifying keywords at the individual level: 5 vs. 20 utterances per keyword from each newly added subject.
Table 8
Comparison of feature extractors by the 95% confidence interval estimates of mean
training time and mean classification accuracy.

Feature extractor Mean training time Mean classification accuracy

Keywords Speakers

ResNet50 63 ± 3 0.980 ± 0.002 0.992 ± 0.001
VGG16 59 ± 2 0.912 ± 0.005 0.881 ± 0.004
Inception-ResNet-v2 93 ± 6 0.941 ± 0.006 0.895 ± 0.007

classification accuracy among the three feature extractors. Specifically,
ResNet50’s average keyword classification accuracy is 6.8% higher
than VGG16 and 3.9% higher than Inception-ResNet-v2. Its average
speaker classification accuracy is 11.1% higher than VGG and 9.7%
higher than Inception-ResNet-v2. The ResNet50’s average training time
is comparable to VGG16 but about 30 s shorter than Inception-ResNet-
v2. This experiment verifies the appropriateness of choosing ResNet50
as the feature extractor for the proposed classification model.

5.6.3. Speaker verification methods
Many studies found that the d-vector is an effective speaker repre-

sentation extracted by a deep neural network for speaker verification.
The d-vector of a test utterance is compared to a speaker model,
generally the average over the d-vectors of the speaker’s enrollment ut-
terances. The cosine similarity is a measurement for comparing the test
d-vector to the speaker model. If the cosine similarity score exceeds a
pre-specified threshold, the test utterance is verified as coming from the
authorized speaker. The mechanism of the d-vector method indicates it
is a suitable method to verify the speaker if the keyword classification
model is developed for a single user. However, for a unified model
with multiple authorized users, the d-vector method needs a speaker
model for every authorized user and calculates the cosine similarity
values between the test d-vector and each speaker model. For example,
if the model is shared by 30 users, then 30 speaker models are required
and 30 cosine measurements are calculated. The computational time
increases linearly with the number of authorized speakers. Averaging
all authorized users’ d-vectors to obtain the authorized speaker group
model is reckless with poor performance. Section 3.3 proposed a sim-
ple ratio method based on the speaker classification scores for the
multi-user model, which was verified to be effective in Section 5.4.

The ninth experiment compared the speaker verification perfor-
mances of the d-vector method that is based on the authorized speaker
group model to the proposed ratio method on three models: (a) the
model trained for subjects #1∼#5, and the training dataset contains
20 utterances per keyword per subject; (b) the model trained for
subjects #1∼#30, and the training dataset contains 20 utterances per
keyword per subject for subjects #1∼#5 and 5 utterances per keyword
per subject for subjects #6∼#30; and (c) the model is trained for
subjects #1∼#30, and the training dataset contains 20 utterances per

keyword per subject. In this experiment, unauthorized speakers are
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defined as the positive class and authorized speakers as the negative
class, assuming detecting unauthorized speakers is a high priority for a
model user. Fig. 8 compares the receiver operating characteristic (ROC)
curves (i.e., true positive rate vs. false positive rate at various detection
threshold values) of the d-vector method and the ratio method for each
of the three models. AUC is the area under the ROC curve, which
can take any value from 0 to 1. The larger the AUC value the better
the performance in detecting unauthorized speakers. The AUC values
of the d-vector method implemented by the three models are 0.7909,
0.3933, and 0.2608, while the AUC values of the ratio method are
0.8795, 0.8969, and 0.9623. That is, the d-vector method performs
poorly when the group size is relatively large, but the ratio method
is more reliable. The performance of the ratio method can be further
improved by increasing the training data.

6. Conclusions

This paper developed a unified multi-tasking deep learning model
to classify the keywords of inspectors’ commands for guiding a semi-
autonomous drone in inspection and, simultaneously, recognize inspec-
tors who spoke the commands. The proposed S2C architecture allows
the two classification tasks to share the feature extractor and then
split the subject-specific and keyword-specific features intertwined in
the extracted features through feature projection and collaborative
training. The model was trained on pooled data collected from the
group of authorized inspectors who will use the model to stay in the
loop of the semi-autonomous drone-assisted inspection.

This study collected an inspection keyword dataset from eight sub-
jects to illustrate the proposed model. The dataset contains ten key-
words that each of the subjects repeated every keyword about fifty
times. A base model developed for a group of five authorized subjects
achieved 95.3% or higher mean accuracy in classifying the keywords
for any authorized inspectors. Its mean accuracy in speaker classifi-
cation is 99.2%. The proposed model has effectively addressed the
non-transferability of point solutions trained on the data of one subject
and used only by that subject. Adapting the base model to include a
new subject only requires collecting a small amount of training data
from the new subject, like five utterances per keyword. The speaker
prediction scores are effective for speaker verification. The base model’s
success rate in verifying authorized subjects is 93.9%, and 76.1% in
detecting unauthorized ones. Increasing the training sample size can
effectively improve speaker verification accuracy. The proposed model
was further trained and tested on a public audio command dataset
collected from sixty subjects. The proposed model was successfully
applied to large-size groups, manifested by the consistently high and
reliable keyword classification accuracy. Speaker classification will
become more challenging when the group size is large, indicated by
the decreased mean value and the enlarged variance of subject-level
accuracy in speaker recognition. At the minimum, collecting sufficient

training data from the subjects can address the challenge effectively.
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Fig. 8. Receiver Operating Characteristic (ROC) curve for speaker verification on the spoken digit dataset: d-vector method vs. ratio method.
Future work beyond this paper exists in three dimensions. First of
ll, implementing the classification model requires additional effort
eyond this paper’s study score. For example, an additional module
s needed for locating command-related segments from stream data
nd extracting keyword utterances from the segments. Every working
nvironment is unique, and every inspector is special. A research
uestion is how to further improve the model’s adaptability to noises
n open-working environments and the varied spoken habits of in-
pectors. Effective data augmentation and model adaptation methods
re possible solutions. Secondly, the current model can be further
mproved in multiple directions. The current study assumes a bijective
elationship between the audio commands and the drone’s actions. A
ore user-friendly approach to communication requires a surjective

unction that allows for mapping variants of each command from
nspectors to the corresponding action of the drone. If new inspectors
ropose adding new keywords, class-incremental learning will happen
o both classification tasks. Lastly, the study of this paper builds a
ethodological foundation for addressing the negative transfer issue,
eaning a richer representation of speech is not learned from pooled
ata. Surface electromyography (sEMG) based silent speech recognition
as a variety of critical applications, such as healthcare and defense,
ut it suffers from the negative transfer issue. Knowledge gained on
ulti-modal data (i.e., audio and sEMG) can be distilled to models that
se sEMG as the single input for silent speech recognition. This paper
rovides an opportunity to explore those new research questions.
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