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Abstract: Residual stresses are often imposed on the end-product due to mechanical and thermal
loading during the machining process, influencing the distortion and fatigue life. This paper proposed
an original semi-empirical method to predict the residual stress distribution along the depth direction.
In the statistical model of the method, the bimodal Gaussian function was innovatively used to fit
Inconel 718 alloy residual stress profiles obtained from the finite element model, achieving a great
fit precision from 89.0% to 99.6%. The coefficients of the bimodal Gaussian function were regressed
with cutting parameters by the random forest algorithm. The regression precision was controlled
between 80% and 85% to prevent overfitting. Experiments, compromising cylindrical turning and
residual stress measurements, were conducted to modify the finite element results. The finite element
results were convincing after the experiment modification, ensuring the rationality of the statistical
model. It turns out that predicted residual stresses are consistent with simulations and predicted data
points are within the range of error bars. The max error of predicted surface residual stress (SRS) is
113.156 MPa, while the min error is 23.047 MPa. As for the maximum compressive residual stress
(MCRS), the max error is 93.025 MPa, and the min error is 22.233 MPa. Considering the large residual
stress value of Inconel 718, the predicted error is acceptable. According to the semi-empirical model,
the influence of cutting parameters on the residual stress distribution was investigated. It shows
that the cutting speed influences circumferential and axial MCRS, circumferential and axial depth of
settling significantly, and thus has the most considerable influence on the residual stress distribution.
Meanwhile, the depth of cut has the least impact because it only affects axial MCRS and axial depth
of settling significantly.

Keywords: semi-empirical prediction; residual stresses; bimodal Gaussian fit; finite element method;
Inconel 718

1. Introduction

Nickel alloys represent a significant metal portion of aircraft structural and engine components [1].
Among nickel alloys, Inconel 718 is used most extensively due to the excellent properties, including
fatigue resistance, oxidation resistance and corrosion resistance. The surface integrity of machined
Inconel 718 is always in a significant concern, and in the indicators of the surface integrity, the
residual stress of the surface layer is in great importance. The residual stress is often imposed on the
end-product during the machining process, influencing distortion and fatigue life. The large machining
deformations are often observed due to the machining-induced residual stresses [2]. Hence, it is
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essential to comprehend the mechanism of the residual stress generation and develop the prediction
method of the residual stress.

Extensive researches have been carried out to obtain the mechanism of the residual stress generation.
Residual stresses are generally affected by two factors: (1) plastic deformation and (2) changes in the
volume of materials associated with thermal gradients and metallurgical alterations in structure [3].
Plastic deformations are linked to the thermo-mechanical loadings during machining. It is known
that plastic deformations and thermo-mechanical loadings are caused and/or supported by many
parameters such as cutting parameters, tool parameters and workpiece materials [1]. Consequently,
these parameters influence residual stresses indirectly. Besides, residual stresses are not only relevant to
macro factors such as thermo-mechanical loadings, but also relevant to the microstructure of materials.
According to one paper [4], cutting parameters such as depth of cutting, feed rate and cutting speed
are linked to the microstructural detail of materials. Thus, cutting parameters are linked to residual
stresses both in macro and micro aspects. Residual stresses are often divided into tensile residual
stresses and compressive residual stresses. It is generally observed that by increasing cutting speed,
tensile residual stresses tend to become more compressive, while increases in depth of cut and feed rate
have some effect on making the residual stresses more tensile at the surface and more compressive in
the peak compressive depth [5]. As for the effect of tool parameters, in the turning process, nose radius
and entrance angle influence residual stresses, while the rake angle plays a minor role [6]. Besides, the
mechanical properties of machined material profoundly influence the level of residual stresses [7].

A great many prediction models of residual stresses have been developed based on the mechanism
of the residual stress generation, including analytical models, finite element method (FEM) models
and empirical models. A research paper developed an enhanced analytical model for residual stress
prediction [8], taking into account the effect of the flank face wear length. The established 2-D modeling
of Ti-6Al-4V in this paper demonstrated that the value tensile residual stress increases and the depth
of residual stress distribution is more profound as the machined surface temperature increases. Kun
Huang and Wenyu Yang [9] proposed an analytical model of residual stress formation. A conclusion
was made that different initial stress values of one point would lead to different residual stress values,
and thus, the initial stress was considered in this model. Similarly, Omar Fergani [10] also proposed
an analytical algorithm to predict residual stresses in multi-step machining, including a regeneration
algorithm considering the initial stress left by the previous machining step.

The finite element method is a powerful method for modeling the residual stress prediction. T.
Ozel [11] used 3D finite element simulation to predict machining induced residual stress in Ti-6Al-4V
and IN100 alloys, and the predicted stress field was compared against measured residual stresses.
Ma [12] developed a FEM analysis model to study the evolution process of residual stress field
during successive machining, claiming that the influence of machining process on the in-depth stress
distribution also depended on the stress before this machining pass. A research paper of tool wear [13]
also developed a FEM model to predict the residual stress considering the effect of tool wear. The results
of the finite element model for the sharp tool were in high agreement with experimental results, while
for the tool with a wear land, the results had a deviation from the validation tests in the compression
zone. Thus, further research is needed to conduct to eliminate the sources of error in the finite element
numerical model. One paper [14] developed a hybrid modeling approach by ABAQUS/Explicit and
user-defined subroutine to overcome excessive element distortion problem at a small length scale in
FEM. Undoubtedly, the built model could be used to simulated cutting forces, chip morphology and
residual stresses under large-deformation circumstances.

The empirical modeling method has also been conducted to predict the residual stress field.
Empirical models often utilize statistical methods, and they are valid for the ranges of the experiments
conducted [15]. Some researchers used polynomial fits [16,17] for fitting the experimental residual
stress profiles to develop empirical models. Based on previous researches, D. Ulutan [18] proposed an
empirical model for residual stress profile in machining nickel-based superalloys. The paper used
sinusoidal decay function to fit the residual stress profile and particle swarm optimization to optimize
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the error between the experimental and model data. Liang Tan [19] perfected the method from D.
Ulutan by studying the evolution of the residual stress after milling, polishing and shot peening.
Besides, Junteng Wang [20] also used a similar method from D. Ulutan and Liang Tan to predict the
residual stress, and furthermore to predict the distortion induced by the residual stress.

Overall, the analytical modeling method has been developed well in 2D modeling, while it still
has limitations in 3D modeling. The finite element method can really solve machining modeling
problem, but it can be still improved in the aspect of time-consuming. The empirical modeling method
can get the most accurate residual stress data but with great economic and time costs. There are still
little papers that consider to combine two modeling methods and utilize both advantages.

In this paper, a semi-empirical model has been developed, consisting of the finite element
modeling and statistical modeling. Thus, the model can be highly efficient as the empirical model,
and meanwhile, avoid too much time-consuming on computation and many experimental works.
The research procedures are shown in Figure 1. Turning process and residual stress measurement
experiments were firstly conducted. Then a FEM model of residual stresses was developed and verified
by the experimental data. Afterwards, a statistical prediction model of residual stresses was established
from the FEM data, comprising the innovative combination of bimodal Gaussian fitting and random
forest regression. The sensitivity analysis of turning parameters, aiming to investigate the impact of
cutting parameters on the residual stress distribution, was also presented.

Verify
—

ﬂ Develop

Analyze
C—

Figure 1. The synoptic realization steps of the proposed residual stresses prediction method.

2. Methods

2.1. FEM Modelling

In order to obtain adequate residual stress profiles for later statistical prediction, a FEM model is
desirable. Considering both accuracy and efficiency of simulations, the complexity of the model is also
required to be balanced. Therefore, the simplified 3D cutting model was selected. The finite element
simulation software is AdvantEdge (V7.4015, Third Wave Systems, Minneapolis, MN, USA).

As shown in Figure 2, the workpiece is a tube part, whose small portion was selected as the
analysis domain for reducing the computation time. Therefore, the turning model could be converted
to the simplified 3D model. After the turning process, a cooling process was performed to obtain the
final residual stress profiles.

Turning parameters, including feed rate (x direction), depth of cut (z direction) and cutting speed
(y direction), were set in the cutting model. DOC is the abbreviation of the depth of cut. Considering
that the analysis domain is minimal, the curvature of the workpiece is neglected as shown.

The cutting tool was produced by Sandvik company (Stockholm, Sweden), and the finite element
geometry model and position of the cutting tool were generated using parameters from the Sandvik
website. AdvantEdge could automatically generate the cutting tool when all the tool parameters were
put in. The coating material of the tool is TIAIN. The material of the tool is Carbide-Grade-M. The
tool has a 0.02 mm edge radius and a 1.2 mm nose radius, with 6° clearance angle, —6° rake angle,
—17.5° lead angle and —7° inclination angle. The properties of the cutting tool were input, and then the
tetrahedral mesh was automatically generated, with 0.3 mm maximum element size and 0.015 mm
minimum element size.
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Figure 2. The modeling simplification of the cylindrical turning.

The workpiece was modeled as an elastic-plastic body, and residual stresses would be influenced
both by elastic and plastic strain. In the elastic strain region, Young’s modulus and Poisson’s ratio
represent mechanical properties of materials and are utilized to compute stress until the yield stress is
reached and plastic deformation begins [21]. The workpiece material is Inconel 718. Young’s modulus
of Inconel 718 is 204 GPa, and Poisson’s ratio is 0.3. In the plastic strain region, the influence of
strain, strain rate and temperature on flow stress should be considered, which is essential in finite
element analysis. Thus, a variety of constitutive models have been proposed to describe the metal
cutting process, some of which were improved to more accurately depict the plastic strain of unique
materials [22]. The power law constitutive model, as represented in Equation (1), was used in this paper.

a(e’,€) = g(eF) X T () xO(T), 1)

where g(¢&”) is strain hardening, I'(¢) is strain rate sensitivity and @(T) is thermal softening. Jiang [23]
elaborated the details of this equation, compromising the specific equation of g(¢?), I'(¢) and O(T)
as followed.

The strain hardening g(¢”) is defined by Equations (2) and (3):

1/n
p &P e 14
g(ef) = ool 1+— | ,ifeP< e, )
£
gp 1/n
g(ef) = 00(1+f—pl‘t] ,ifef> €, 3)
€
where 0y is the initial yield stress, ¢ is the plastic strain, eg is the reference plastic strain, efu ; is the cut
off strain and 1/n is the strain hardening exponent.
The thermal softening ©(T) is defined by Equations (4) and (5):
O(T) = co+ 1T + coT? + 3T + c4T* + 5T, if T < Teyt, (4)
T-T
O(T) = @(Tcut)(l - ) if T > Teu, (5)
Tonert = Teut

where ¢ through c5 are coefficients for the polynomial fit, T is the temperature, T, is the linear cut off
temperature and T, is the melting temperature.
The strain rate sensitivity I'(¢) is defined by Equations (6) and (7):

1

T(é) = (1+i) Lifi<é, ©)
€0
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where ¢ is strain rate, g is reference plastic strain rate, ¢; is strain rate where the transition between

low and high strain rate sensitivity occurs, 1, is the low strain rate sensitivity coefficient and m; is the

high strain rate sensitivity coefficient. Default constitutive model coefficient values of Inconel 718 in

the software were used in this paper.

The workpiece material is Inconel 718, with 1613 MPa ultimate tensile strength and 1103 MPa
yield strength. The tetrahedral mesh was automatically generated in the workpiece, with 0.5 mm
maximum element size, 0.06 mm minimum element size and 0.03 mm adaptive remeshing parameters.
Elements in the cutting zone determined by adaptive remeshing parameters would be refined as the
contact area between the tool and the workpiece changed.

Then process parameters were input. Afterwards, the simulation was conducted with the residual
stress option selected. The cooling simulation would be conducted only when the residual stress
option was selected, and in this case, the workpiece was cooled to ambient temperature, which was 20
°C. In order to get accurate simulated residual stresses, the element of the adaptive remeshing area
would remain small, with 0.03 mm element size, when the cutting zone went further.

2.2. Bimodal Gaussian Function Fitting

The residual stress is generated by mechanical and thermal loading during the machining process.
Ma, Yuan [24] illustrated the deformation mechanism of the residual stress due to thermo-mechanical
loadings. Typically, the residual stress is divided into the compressive residual stress and the tensile
residual stress.

As shown in Figure 3, under the effect of plastic and elastic strain of the material arising from
the thermal-mechanical loadings, the residual stress distribution along the depth presents a similar
hook-shaped distribution curve. There are four indicators to the distribution curve, which are the
surface residual stress (SRS), the maximum compressive residual stress (MCRS), the depth of the
maximum compressive residual stress (DMCS) and the depth of settling (DS). The distribution curve
can be fitted using appropriate functions.

Some investigations have been conducted on the model of fitting residual stress profiles. One
polynomial fitting model has been proposed [16], and it can fit the residual stress well due to the
flexibility of the polynomial fit. Based on specific residual stress profiles, the polynomial can be set
to specific orders. The number of coefficients of a polynomial function can be adjusted. In order
to achieve high fitting accuracy, orders of the polynomial have to be determined when fitting new
residual stress profiles. Besides, one sinusoidal decay fitting model has also been proposed [18], and
this model is concise, having only four function coefficients. The sinusoidal decay fitting model fits the
residual stress well, and it is an oscillation model, achieving fitting accuracy (R?) varied from 67% to
93%. Yang [15] improved sinusoidal decay fitting the model, making the fitting accuracy (R?) varied
from 81.7% to 99.2%.

Based on the distribution rule of the residual stress, the bimodal Gaussian function, which is the
superposition of two two-dimensional Gaussian distribution functions, can also be used in fitting the
residual stress profiles. The Gaussian distribution is also called the normal distribution. The function
curve is shown in Figure 3. One Gaussian curve is added to another, becoming the bimodal Gaussian
curve. With such a function, the number of coefficients is fixed. Thus, it cannot become complicated,
and it is always concise. The function also converges to zero very fast, making the function fitting the
residual stress well. Such a function can be represented using Equation (8) when the value of nis 2,

having six coefficients.
2
gl
o(z) = Z er—— 2 8)
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where 0(z) is the value of the residual stress. A; is the amplitude constant. w; is the standard deviation.
z is the depth to the machined surface. z; is the expectation of the distribution.

However, six coefficients were too redundant for fitting the residual stress distribution curve.
During the fitting process, the value of z.; in Gaussian curve 1 was all close to zero. Besides, after many
attempts, the bimodal Gaussian curve was found that it still performed well in fitting when w; was
fixed as 0.13. Thus, w; and z.; were fixed as 0.13 and 0 to make the fitting function more laconic. The
Equation (8) can be expressed as Equation (9). Equation (9) was found that it could further improve
the fitting accuracy, making the accuracy (R?) varied from 89.0% to 99.6%.

(z-z 2)2
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A 2. 9)
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e <0069 +

o(z)

- — — Gaussian curve 1
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Figure 3. The bimodal Gaussian curve.
2.3. Random Forest Regression

After the fitting of residual stress profiles, a regression model needs to be established for describing
the relationship between coefficients of the bimodal Gaussian function and cutting parameters. The
relation of cutting parameters and the residual stress distribution is then finished, achieved the purpose
of predicting residual stress profiles using cutting parameters. Typically, a regression model needs
a regression function to represent the relationship between dependent variables and independent
variables. Researchers need to know the general relation to determine the appropriate regression
function. However, the general relation between coefficients of bimodal Gaussian fitting function and
cutting parameters is complicated to evaluate. In this case, a regression method that does not need a
regression function is of great importance.

The regression can be made using the random forest regression method without a regression
function expression. The random forest algorithm can operate the task by constructing a multitude of
regression trees at training time and outputting the mean prediction of the individual trees [25]. As
shown in Figure 4, the training sets, which are composed of cutting parameters and function coefficients
(responses), are collected firstly. Then with training sets, random samples are selected repeatedly
using the bagging [26] method. Samples must be put back to the training sets after one sampling.
Regression trees [27] are fitted to these samples, which can be expressed by Equation (10). After
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training, predictions for test samples can be made by averaging the predictions from all individual
regression trees, so the prediction accuracy is tested. Equation (11) is the averaging function.

Ci = fi(ap, f,0), (10)

where C; is one coefficient of the bimodal Gaussian function. ay, is the depth of cut. f is the feed rate. v

is the cutting speed.

= 1
Ci = filay, f. "), (11)

where C; is one function coefficient’s prediction value. N is the number of regression trees. ay, f’, v’
are testing values.

Figure 4. The flowchart of the random forest algorithm.

3. Experimental Procedures

3.1. Workpiece and Cutting Tool

The researched material was Inconel 718 with 43 HRC hardness, and the heat treatment was
solution and aging. The main chemical composition of nickel alloy Inconel 718 is shown in Table 1.
The workpiece was a circular tube shape, with a 76 mm external diameter, 8.8 mm thickness and 200
mm length.

Table 1. The chemical composition of Inconel 718.

Elements Ni Cr Fe Nb Mo Ti
Weight%  52.860 19.085 19.15 5.085 3.105 0.710

The cylindrical turning tool and tool holder, shown in Figure 5, were provided by Sandvik corp.
CoroPlus®ToolGuide from Sandvik was used for selecting the tool and tool holder. The tool’s model
was DNMG150412-SMR1105, with PVD coating and Type D insert shape. The model of the tool holder
was DDHNR 2525M 1504, with 25 mm X 25 mm connecting size. The FEM model of the cutting tool
was based on parameters of the turning tool and tool holder. The turning tool mainly determined the
geometry information of the FEM tool model, while the tool holder mainly determined the position
information of the FEM tool model. New tools were used for each experiment to eliminate the influence
of the tool wear.
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Figure 5. Details of the turning experiments.

3.2. Cutting Parameters

All cutting experiments were conducted in the Bochi SK501 CNC lathe. Sixteen sets of cutting
parameters were arranged using the Taguchi method. In order to establish the prediction model
conveniently, six sets of parameters were selected from sixteen sets as experimental parameters, which
are shown in Table 2. Experiment results would be used to modify the finite element model.

Table 2. Experimental turning parameters.

Number Feed Rate f mm/r Depth of Cut a mm Cutting Speed v m/min
1 0.1 0.2 30
2 0.4 0.8 30
3 0.1 0.4 60
4 0.3 0.2 90
5 0.1 0.8 120
6 0.4 0.2 120

3.3. Residual Stress Measurements

After machining, residual stresses of all workpieces were measured by the X-ray diffraction
method. As shown in Figure 6, the p-360n X-ray residual stress analyzer was assembled by the
sensor unit and the oscillation unit. The ball screw and the mobile platform were utilized to move
the workpiece for measuring residual stresses of different points on the workpiece. The workpiece
holder was used to fix the workpiece. Measurement parameters are listed in Table 3. Besides, in
order to measure the residual stress in-depth, the electro-chemically polishing method, one of peeling
methods [28], was used. Compared to chemical corrosion [29], the electro-chemically polishing method
is more efficient. As shown in Figure 7, a small apparatus was designed to polish the workpiece.
The cathode corrosion rod allowed corrosion of small holes of specified size on the workpiece. The
electrolyte entrance and the electrolyte exit allowed the electrolyte to flow between the cathode
corrosion rod and the anode workpiece. The curved surface fitted the cutting surface of the workpiece
to prevent the electrolyte from flowing away. Polishing parameters are listed in Table 4.
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Figure 6. The X-ray residual stress analyzer.
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Figure 7. An apparatus of electrolytic corrosion.

Table 3. X-ray residual stress measurement parameters.

Parameters Values
X-ray tube voltage 30.00 KV
X-ray tube current 1.20 mA
X-ray wavelength
(K-Beta) 2.08480[A](Cr)
Diffraction angle (2Theta) 150.876 deg
Diffraction lattice angle
(2Eta) 29.124 deg

Table 4. Electrolytic corrosion parameters.

Electrolytic Parameters Values
Electrolyte 10% NaCl
Electrolyte speed 800 mL/min
Voltage 24V
Electric current 3A

Polishing rate 0.005 mm/s

9of 16
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4. Results and Discussions

4.1. Residual Stress Comparison of Simulations with Experiment Results

A comparison between the simulated and experimental residual stresses along the depth of the
cutting surface is shown in Figure 8, where the experimental residual stress is indicated in triangular
and circular points at each measured depth.
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Figure 8. The comparation of experimental and simulated residual stress results.

The simulated residual stress, which meets the hook-shaped distribution curve, is represented in
solid lines. Standard deviations are also represented using error bars. For the six sets of parameters,
it was observed that both the simulated and experimental surface residual stress was tensile, and
as the depth increased, the residual stress quickly became compressive stress and then recovered
to zero. As for all sets of both the simulated and experiment residual stress, the DMCS (depth of
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maximum compressive stress) and the DS (depth of settling) of the circumferential direction were more
profound than that of the axial direction. Thus, in this aspect, the simulated results were consistent
with the experimental results. When the depth of cut was also 0.2 mm and 0.4 mm, simulated results fit
experimental resulted well. Meanwhile, simulated residual stresses possessed a slight deeper influence
zone than experimental residual stresses when the depth of cut was 0.8 mm, but such little inaccuracy
was acceptable. The SRS (surface residual stress) and MCRS (maximum compressive residual stress) of
all sets also had somewhat differences with experiments. However, they were basically within the
range of error bars, meaning that simulated results were reliable. Besides, simulated results were in
consistency with the experimental result under varied sets of machining parameters, signifying that
the simulation model was credible in other ten sets of machining parameters from the Taguchi method.

Generally, simulated residual stresses were consistent with the experimental residual stresses,
and thus, residual stress profiles obtained from the finite element simulation were reliable

4.2. Statistical Model of Residual Stresses

A statistical model, based on residual stress profiles from FE simulations, was established using
the bimodal Gaussian curve and the random forest algorithm. Tables 5 and 6 show the fitting function
coefficient results of circumferential and axial residual stresses. The minimum of R?, which is the
judgment criteria for regression accuracy, was 0.89, representing that the bimodal Gaussian curve
could fit residual stress profiles very well.

Table 5. Circumferential residual stresses fitting function coefficients.

Feed Rate f Depth of Cuta, Cutting Speed v

No. mm/r mm m/min Aq Ay wy Ze R?

1 0.1 0.2 30 76949  -36.866  0.0847 0.0673 0.978
2 0.2 0.4 30 79.562  —41.205  0.0788 0.0677 0.910
3 0.3 0.6 30 108.799 -70.394  0.0730 0.0864 0.985
4 0.4 0.8 30 113.572 -73.099  0.0851 0.1170 0.989
5 0.1 0.4 60 106.241 -74913  0.0749 0.0872 0.996
6 0.2 0.2 60 120.262 -81.490  0.0656 0.0859 0.954
7 0.3 0.8 60 143.626 —88.654  0.0715 0.0919 0.986
8 0.4 0.6 60 76.651  -58.728  0.0738 0.1031 0.986
9 0.1 0.6 90 226.585 —172.272 0.0479 0.1046 0.915
10 0.2 0.8 90 85.867 —-73.056  0.0767 0.0869 0.976
11 0.3 0.2 90 159.128 -116.290 0.0628 0.0975 0.960
12 0.4 0.4 90 108.665 —77.353  0.0851 0.0892 0.964
13 0.1 0.8 120 113.242 -98.431  0.0665 0.0942 0.950
14 0.2 0.6 120 155.171 -116.350 0.0665 0.0890 0.908
15 0.3 0.4 120 110.125 -75.271  0.0792 0.0783 0.890
16 0.4 0.2 120 140.745 -103.309 0.0752 0.1057 0.972

In order to predict the residual stress distribution by cutting parameters, the random forest
algorithm was utilized to build a regression model between cutting parameters and fitting function
coefficients. All the data from Tables 5 and 6 were used as training sets for random forest regression.
In order to prevent overfitting, The R? value of the random forest regression was controlled between
0.8 and 0.85. Figure 9 shows the predicted residual stress distribution and simulated residual stress
profiles at three validation sets. With 55 m/min cutting speed, 0.55 mm depth of cut and 0.35 mm/r
feed rate, the SRS, DMCS and DS of the prediction were in good agreement with simulation in both
directions, while the predicted MCRS of two directions were somewhat higher than the simulation. As
to other two validation sets, which were 85 m/min cutting speed, 0.25 mm depth of cut, 0.35 mm/r
feed rate and 105 m/min cutting speed, 0.65 mm depth of cut, 0.15 mm/r feed rate, predicted curves fit
simulation results perfectly in SRS, MCRS, DMCS and DS. It can be noted that all curves of the last
two validation sets were within the simulated error bars. Predicted residual stress profile functions
of three validation sets are shown in Table 7. Curves in Figure 9 are graphical representations of six
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functions, including the circumferential and axial direction. As shown in Table 7, six functions had
their test numbers from one to six. Table 8 shows the max and min predicted errors of residual stress
indicators. The max and min predicted errors of SRS were 113.156 MPa and 23.027 MPa, while the max
and min predicted errors of MCRS were 93.025 MPa and 22.233 MPa. The residual stress value level of
Inconel 718 was high, and the value often could reach 1000 MPa. Thus, predicted residual stress errors
were acceptable. As for the DMCS, the max and min errors were 0.00905 mm and 0.000690 mm. DS
had a 0.0142 mm max error and a 0.00149 mm min error. Depth errors were minimal.

Table 6. Axial residual stresses fitting function coefficients.

Feed Rate £ Depth of Cutap, Cutting Speed v

No. mm/r mm m/min 4 42 w2 Ze2 R?

1 0.1 0.2 30 162.795 —-88.504 0.0752 0.0786 0.986
2 0.2 0.4 30 63.657 —-45976  0.0783 0.0732 0.994
3 0.3 0.6 30 129.306 —-82.682  0.0705 0.0779 0.993
4 0.4 0.8 30 127.230 —69.057  0.0802 0.1054 0.993
5 0.1 0.4 60 127.431 -90.047  0.0705 0.0775 0.964
6 0.2 0.2 60 160.150 —105.493 0.0609 0.0889 0.991
7 0.3 0.8 60 108.326 —-66.932  0.0774 0.0735 0.989
8 0.4 0.6 60 115.207 -58.872  0.0827 0.0772 0.987
9 0.1 0.6 90 141.248 —-98.805 0.0619 0.0772 0.927
10 0.2 0.8 90 114.557 -79.764  0.0707 0.0802 0.990
11 0.3 0.2 90 159.798 —-103.773 0.0637 0.0902 0.984
12 0.4 0.4 90 129.134 -84.358  0.0824 0.0925 0.986
13 0.1 0.8 120 146.977 -116.256 0.0634 0.0818 0.968
14 0.2 0.6 120 160.463 —113.094 0.0655 0.0851 0.966
15 0.3 0.4 120 116918 -83.780  0.0757 0.0751 0.975
16 0.4 0.2 120 136.899 -85.867  0.0789 0.0938 0.979

Table 7. Predicted residual stress profile functions.

2 =z

— A 22 Ay w?
g(z) = 0.13\@8 00169 + wzme 2
Feed Rate f Depth of Cut  Cutting speed Test No Direction A A w .
mm/r ap mm v m/min : 1 2 2 c2
1 Circumferential 99.691 —77.193  0.0943 0.0738
0.35 0.55 55 2 Axial 123882 —74734 00769  0.0738
- 05 o 3 Circumferential 146828 —110.668 0.0939  0.0667
: : 4 Axdal 159.869 —98236 0.0872  0.0661
5 Circumferential 155582 —105.887 0.0894  0.0669
0.15 0.65 105 6 Axial 135573 —93241 00791  0.0673

Table 8. Max and min predicted errors of residual stress indicators.

Indicators Max Error Test No. Min Error Test No.
SRS (MPa) 113.156 4 23.047 6
MCRS (MPa) 93.025 2 22.233 6
DMCS (mm) 0.00905 3 0.000690 1
DS (mm) 0.0142 3 0.00149 1

In general, predicted residual stress distribution curves were consistent with the simulated
residual stress profiles, proving that the semi-empirical prediction method proposed by this paper
was convincing.



Materials 2019, 12, 3864

T T T T
600 [ V=55 m/min Circumferential Predicted-
k a,=0.55 mm A Circumferential Simulated
400 | f=0.35 mm/r i
© \
% \
\
S 200F |\ -
2 \
o \
) L \ ) G
I 0 \ %/} } }
3 \ g/’/
‘o -200 4
g N\ } }//
N\ A
-400 T E
-600 | E
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)
T T T T
600 v,=85 m/min Circumferential Predicted
\ a,=0.25 mm A Circumferential Simulated
200 L '\\ =0.35 mmir 4
»n \
g 200F O\ .
5 ol 114
.‘5 \\\ /i/ -
g 1
o -200 F \ ]
\ { /V
\
-400 |- 1
b
-600 B
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)
T T T T
600 V=105 m/min —— Circumferential Predicted -
b Y a,=0.65 mm 4 Circumferential Simulated
a0l \ £=0.15 mm/r i
L] \
§ }
% 200 - \\\ 1
) \
n  of \\} },,,,,Lfé s
= -
3 e £
@ 200 - .
14 \
-400 \}\{/ /! -
-600 B
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)

Residual Stress(MPa)

Residual Stress(MPa)

Residual Stress(MPa)

13 of 16
T T T T
600 p V=55 m/min Axial Predicted i
a,=0.55 mm ® Axial Simulated
400 f=0.35 mm/r B
200 4
0k
g & &3
-200 { { -
-400 | { E
-600 - -
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)
T T T T
600 | V=85 m/min Axial Predicted _
a,=0.25 mm ® Axial Simulated
400 |- f=0.35 mm/r i
200 E
of 3 I )
-200 { E .
-400 |- } * .
-600 E
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)
T T T T
600 § V=105 m/min Axial Predicted E
a,=0.65 mm ® Axial Simulated
400 f=0.15 mm/r i
200 - B
ol { ; ¢ ¢ ¢
200 | i .
-400 - { E
-600 { i
1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25
Depth(mm)

Figure 9. The comparation of predicted and simulated residual stress results.

4.3. Sensitive Analysis

ANOVA was utilized in this paper to reveal the effects of cutting parameters on SRS, MCRS, DMCS
and DS. Figure 10 shows the sensitivity analysis result. F is a statistic for examining the sensitivity,
reflecting the influence degree of machining parameters on indicators, which were SRS, MCRS, DMCS
and DS. The confidence interval was chosen as 0.90, and then the confidence « was 0.10. According to
the F distribution table, the value of F in this sample was 3.29. When the F value of one factor exceeded
3.29, it meant the factor influenced the indicator significantly. Otherwise, the factor had little effect on

the indicator.

As can be seen in Figure 10, all three machining parameters imposed little effects on both
circumferential and axial SRS. As for MCRS, the cutting speed had a significant impact on both
circumferential and axial MCRS, and the feed rate and depth of cut influence the axial MCRS a lot.
Besides, the feed rate affected circumferential DMCS to a great extent, while no parameters influenced
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axial DMCS. As to the DS, the circumferential DS was only sensitive to the cutting speed, while the
axial DS was sensitive to all three parameters.

To sum up, the cutting speed affected four indicators greatly, therefore having the most significant
impact on the residual stress distribution. Feed rate influenced three indicators, also affecting the
residual stress greatly. The depth of cut had the least effect on the residual stress distribution, only
significantly affecting two indicators.

32 . r . 12 : : :
Alfa=0.10 .. I Circumferential SRS Alfa=0.10 [ Circumferential DMCS
28| P Il Axial SRS . {00 Axial DMCS
i Circumferential MCRS { 10 . Circumferential DS
24 | B 0 Axial MCRS 4
| 1 sk B
20 | 4
© o
=] =]
T 16 | 1® 6F i
g 16 g 6
L w
12+ 4
4T Ssignificant - F=3.29]
8 i 7 Not significant :
4| Significant i Fe3zol 2
Not significant ;
0 0
Cutting Speed Feed Rate Depth of Cut Cutting Speed Feed Rate Depth of Cut
Parameters Parameters

Figure 10. The effects of the cutting parameters on residual stress distribution indicators.

5. Conclusions

In this paper, residual stresses after cylindrical turning were investigated, and a new semi-empirical
prediction method for machining residual stresses was developed using the bimodal Gaussian curve
and the random forest algorithm. The impact of cutting parameters on the residual stress distribution
was also investigated. The following conclusions could be made according to the investigation:

1. The finite element model built in this paper was a reliable tool to reflect the experimental turning
process. Simulated residual stress distributions were compared to experimental results under
six sets of machining parameters. It turned out residual stresses could be relatively accurately
obtained by the simulation model, and thus simulated results could be used as the training data
for the later statistical prediction model.

2. High consistency between verified simulated residual stress distributions and statistical predicted
residual stress distributions was exhibited in this paper. The bimodal Gaussian curve was used
in the statistical model to fit the simulated results, achieving the fitting accuracy from 89.0% to
99.6%. The random forest algorithm was utilized to build a regression model between machining
parameters and fitting coefficients, and the regression accuracy was controlled between 80% and
85% to prevent the overfitting. Three validation sets were showed both in circumferential and
axial directions, and it turned out predicted residual stress distribution curves were consistent
with the simulated residual stress profiles in both directions. Max errors of the surface residual
stress (SRS), the maximum compressive residual stress (MCRS), the depth of the maximum
compressive residual stress (DMCS) and the depth of settling (DS) were 113.156 MPa, 93.025 MPa,
0.00905 mm and 0.0142 mm, which was acceptable.

3. Indicators, compromising the surface residual stress (SRS), the maximum compressive residual
stress (MCRS), the depth of the maximum compressive residual stress (DMCS) and the depth
of settling (DS), were investigated in the sensitivity to machining parameters. It showed that
the cutting speed had the most considerable influence on these indicators, and feed rate also
influenced indicators much. However, the depth of cut had the least impact on indicators.
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