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Decoding Silent Speech Cues From Muscular Biopotential
Signals for Efficient Human-Robot Collaborations

Penghao Dong, Sibo Tian, Si Chen, Yizong Li, Su Li, Minghui Zheng, and Shanshan Yao*

Silent speech interfaces offer an alternative and efficient communication
modality for individuals with voice disorders and when the vocalized speech
communication is compromised by noisy environments. Despite the recent
progress in developing silent speech interfaces, these systems face several
challenges that prevent their wide acceptance, such as bulkiness,
obtrusiveness, and immobility. Herein, the material optimization, structural
design, deep learning algorithm, and system integration of mechanically and
visually unobtrusive silent speech interfaces are presented that can realize
both speaker identification and speech content identification. Conformal,
transparent, and self-adhesive electromyography electrode arrays are
designed for capturing speech-relevant muscle activities. Temporal
convolutional networks are employed for recognizing speakers and converting
sensing signals into spoken content. The resulting silent speech interfaces
achieve a 97.5% speaker classification accuracy and 91.5% keyword
classification accuracy using four electrodes. The speech interface is further
integrated with an optical hand-tracking system and a robotic manipulator for
human-robot collaboration in both assembly and disassembly processes. The
integrated system achieves the control of the robot manipulator by silent
speech and facilitates the hand-over process by hand motion trajectory

found to be more desirable due to the
enhanced privacy, hands-free accessibil-
ity, less specialized training, high ef-
ficiency (e.g., voice interaction is 3X
faster than typing), and for being highly
informative.l*®! For industrial applica-
tions, the system is particularly use-
ful when voice-based speech signals are
compromised by noisy environments.
These characteristics have made SSI
a great alternative to vocalized speech
recognition for interaction with robots,
machines, and smart devices.

Speech recognition has been previ-
ously reported as a method for issu-
ing commands to robots in human-
robot collaboration (HRC).'"'2I' Unlike
traditional industrial robots that follow
preprogrammed routines, collaborative
robots share the same workspaces with
humans,['*%] and dynamically adjust
tasks to assist human operators through-
out the entire manufacturing process.!¢]

detection. The developed framework enables natural robot control in noisy
environments and lays the ground for collaborative human-robot tasks

involving multiple human operators.

1. Introduction

The silent speech interface (SSI) converts non-acoustically ac-
quired cues to speech. Such interfaces have been pursued to
help people with voice disorders caused by diseases, laryngec-
tomy, accidents, vocal abuse, or aging.!'*] Compared with voice-,
touch-, and gesture-based input modalities, silent speech input is
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For instance, robots can assist human op-
erators by handling components and de-
livering them upon receiving commands
during assembly tasks,['*'] allowing hu-
man operators to focus on higher-level
decision-making. This adaptability of
robots necessitates an understanding of human operators’ com-
mands and motions, which enables robots to anticipate hu-
man intentions and adjust their behavior accordingly. However,
speech recognition in manufacturing scenarios faces several
challenges: Noises from machines, workers, and other sources
negatively affect the accuracy of speech recognition, conse-
quently reducing the overall performance of HRC. In addition,
individuals with voice disorders are unable to generate audible
speech commands for robot control. These problems can be mit-
igated by seamlessly integrating SSI into HRC for more efficient
robot control.

The SSI should exhibit good recognition accuracy, portabil-
ity, wearing comfort, noninvasiveness, and unobtrusiveness on
the skin surface. However, existing SSIs can only meet some
of these criteria, restricting their wide acceptance and deploy-
ment. As summarized in Table S1 (Supporting Information),
SSIs based on different methods can be categorized into two
primary groups: Contactless approaches and contact-based ap-
proaches. Contactless methods mainly utilize vision cues, ultra-
sound imaging, or wireless signals to capture speech-induced
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movement profiles of different articulators.['®-%5] For instance,
vision-based methods are effective in tracking lip and neck move-
ments for silent speech recognition but require constant line-of-
sight without occlusion.['®-21] The accuracy of speech recognition
can be affected by the angle of capturing cameras, lighting con-
ditions, and the user’s daily motions. Setting up a camera can be
inconvenient, socially inappropriate, and has the concern of cap-
turing sensitive information.!'! In general, contactless methods
are not hands-free, relying on external devices, and the accuracy
can be affected by environmental interferences and alignment
issues.

Alternatively, for contact-based methods, face-worn or im-
plantable sensors are employed to capture biopotentials from
the brain and muscle, or movement of articulators involved in
speech. Implantable sensors have been explored to detect tongue
movements using attached magnets,!?>’] to interpret signals
from the speech motor cortex,?®! or to measure brain signals
on the cortical surface using Electrocorticography (ECoG).[2°731]
These techniques are invasive and often require surgical pro-
cedures to implant devices. As less invasive methods, a variety
of face-worn sensors are exploited for silent speech recognition.
For instance, electroencephalogram (EEG) helmets worn around
the head,3>*%] inertial sensors placed on the temporomandibu-
lar joint or the neck,*3*%] magnets or electromagnetic devices
placed inside or around the mouth,[**-38] earphones placed in
the ear canal,’? and RFID tags mounted around the mouth!*’!
have been utilized to capture bio-signals and movement pat-
terns. Among these efforts, the flexible RFID tags rely on ex-
pensive and bulky commodity RFID readers. The system is
also vulnerable to the tags’ relative location to the reader and
the dynamic radio environment. Other methods typically imple-
ment bulky or rigid devices that may constrain natural move-
ments associated with speech generation. Stretchable epider-
mal strainl**?] and electromyography (EMG) sensors!**4] that
can better adapt to skin movements are emerging for speech
recognition. However, the recognition accuracy using the strain
sensor requires further improvement. The reported stretchable
EMG electrodes employ metallic films as conductive elements,
which are highly visible on the skin surface and lack inherent
adhesion. Our previous work®! employed metallic nanowires-
enabled electrodes for silent speech recognition, which neces-
sitates eight electrodes placed on the skin surface that are not
fully transparent. Developed electrodes can achieve conformal
contact!*** with the free-form human skin surface for good
signal quality but they were not integrated into one patch. It is
challenging for repetitive removal and reattachment of the elec-
trodes to the same location. EMG signals are however very sen-
sitive to electrode locations. Other reported EMG electrodes are
mainly built upon conductive polymers, carbon-based nanoma-
terials, and metallic materials.[*’! These materials are integrated
with structural designs such as serpentine structures®"! and frac-
tal patterns!®!! to maintain electrode performance on deformable
surfaces such as the human skin. A primary challenge associ-
ated with most reported electrodes for SSIs is their lack of trans-
parency, making them unsuitable for aesthetically sensitive areas
(e.g., the face), particularly for long-term use. Various manufac-
turing methods, including electrohydrodynamic jet printing,[>?!
laser patterning,®*! and sputtering,!** have been employed to fab-
ricate these electrodes for deformable 3D freeform surfaces. To
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promote the wide acceptance of SSI systems for daily use, low-
cost, scalable, and reliable manufacturing methods are in de-
mand for preparing electrode arrays on the skin surface. On the
other hand, standalone stretchable devices, typically consisting of
sensors, microcontrollers, data storage, wireless communication
modules, and portable power sources have been developed for
monitoring various physiological signals and body motions.>>>]
Such platforms enable fully stretchable and conformable skin
interfaces that promote a paradigm shift in healthcare, activ-
ity tracking, and human-computer interfaces. The SSIs will also
benefit from further development of standalone stretchable de-
vices that integrate sensing electrodes, data collection, machine
learning algorithms, and data transmission components in one
stretchable platform.

In this work, we present an unobtrusive SSI enabled by a trans-
parent and integrated EMG electrode array as well as a frame-
work for incorporating SSI into HRC (Figure 1a—g). Instead of
relying on traditional voice-based speech recognition, this work
highlights an SSI that collects lip movements wirelessly and de-
codes the signals into commands for robot control. A low-cost,
self-adhesive, fully transparent, and conformal electrode array is
designed and integrated for detecting speech cues from the sur-
face EMG signals of the facial skin. With a wireless data acqui-
sition interface and a deep learning algorithm for speech recog-
nition, the entire silent speech system is portable, unobtrusive,
and effective in interpreting silent speech cues for robot control.
The utilized temporal convolutional networks (TCN)model en-
sures high accuracies for speaker classification and speech con-
tent classification in real-time. A motion capture system is em-
ployed to detect the hand motion of the human operator for trig-
gering the hand-over process between the robot and the human
operator. The potentials of the developed framework for HRC are
demonstrated in three human-robot collaborative tasks, includ-
ing a collaborative robot assisting a human operator in both as-
sembly and disassembly tasks, and a collaborative robot working
alongside two human operators in disassembly tasks. The main
contributions of this work include (1) the development of an ad-
hesive, integrated, mechanically and visually imperceptible EMG
sensing array for tracking subtle speech-relevant muscle activi-
ties, (2) the exploration of TCN model for both speaker identifi-
cation and speech content identification, which allows multiple
human operators to work alongside one robot, and (3) the design
of an efficient HRC framework comprising SSI and hand motion
detection that can engage people with voice disorders and remain
robust in a noisy environment.

2. Experimental Section

2.1. Fabrication and Characterizations of the EMG Electrode
Array

The transparent EMG electrode array comprises the top insulat-
ing layer, middle conducting layer, and bottom substrate layer,
along with a flexible cable connecting to the data acquisition cir-
cuit board (Figures 1b, and 2a—f). The middle conducting layer
consists of sensing electrodes and their interconnects. This was
enabled by an optimized mixture of sodium chloride (NaCl), wa-
terborne polyurethane (WPU), ethylene glycol (EG), and deion-
ized (DI) water, where NaCl provides ionic conductive pathways
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Figure 1. Overview of the silent speech interface enabled human-robot collaborations. a) The collaborative working scenario between humans and
robots. b) The structure of the EMG electrode array for robot control via silent speech recognition. c) Example of the collected four-channel EMG signals
from the electrode array. d) Speaker classifications using TCN model 1. e) Keyword classifications using TCN model 2. f) The robot manipulator operates
by interacting with human hands. g) Hand tracking using motion capture markers placed on the hand.

for biopotential sensing, WPU serves as the polymer matrix, and
EG/DI water as the solvent for NaCl. WPU exhibits excellent
biocompatibility, skin-like stretchability,*”) and good adhesion to
the skin surface when containing liquids. These characteristics
make WPU an excellent choice as the polymer matrix for biopo-
tential electrodes. NaCl can form transparent ionic liquids when
dissolved in DI water and EG, while maintaining excellent bio-
compatibility to human skin.[®! The addition of EG into DI wa-
ter retards the dehydration of the ion gel due to the evaporation
of DI water. Compared to the evaporation rate of approximately
0.26 mg min~! at room temperature for DI water, a much lower
evaporation rate of 0.1 mg min~! was obtained from the mix-
ture of EG and DI water with a weight ratio of 5:1.°°) In addi-
tion, a mixture of EG and DI water was also found to improve
the dissolution of NaCl compared with EG alone as the solvent,
owing to the fact that the solubility of NaCl in DI water was
five times than in EG.[®*] Additionally, encapsulating the ionic
liquid into the WPU polymer matrix further reduces the evap-
oration rate due to the decreased vapor pressure and the forma-
tion of a surface film.[6162] The top encapsulation layer, based on
the insulating Ecoflex Gel, covers the conducting layer except for
the sensing electrodes. It provides adhesion to the skin surface
and more importantly, electrically isolates the interconnects from
the skin surface. This ensures that only sensing electrodes can
electrically contact the skin and collect EMG signals, preventing
undesired electrical noises generated from interconnects. The
bottom substrate layer was made from highly stretchable poly-
dimethylsiloxane (PDMS), which provides structural support to
the electrode array. Compared to other biopotential electrodes
based on conventional non-stretchable metallic materials,[**4463]
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PEDOT:PSS,I*’! carbon materials,[® or metallic nanowires,>°!

the fabricated ionically conductive electrode offers several advan-
tages, including increased transparency without sacrificing con-
ductivity, mechanical compliance, adhesion to the skin surface,
low cost, and ease of handling. These merits were essential for
accurate biopotential sensing and good user acceptance during
long-term applications.

The fabrication process of the electrode array was illustrated in
Figure 2. Briefly, EG (Sigma-Aldrich), DI water, and NaCl (Sigma-
Aldrich) were mixed in a 10:2:1 weight ratio to form a solution.
The solution was then added to WPU (UD-410, Bond Polymers)
at a weight ratio of 5 to 2 and mixed thoroughly to get the mix-
ture for the conducting layer (Figure 2a). Mixture of 1.5 g was
drop-cast onto a glass substrate that was coated with a lower sur-
face energy liner (Figure 2b). The mixture was cured at room
temperature for 12 hours. Too short curing time leaves resid-
ual liquid (water and EG) on the surface of the ionic conducting
layer, leading to delamination between the PDMS and the ionic
conducting layer. Then the resulting film was patterned into a
desired shape to form the sensing electrodes and interconnects
(Figure 2c). To create the substrate layer, 0.5 g PDMS (Sylgard
184, Dow) with the base to curing agent weight ratio of 15:1,
was drop-cast and cured at 40 °C for 12 hours (Figure 2d). The
structure was flipped (Figure 2e) and a thin layer of Ecoflex Gel
(Smooth-On) was coated on the top of the interconnect region.
The insulating encapsulation layer was cured at room tempera-
ture for 2 hours (Figure 2f). A flexible cable was then connected
to the electrode array with the assistance of the silver paste (120-
07, Creative Materials). The detailed dimensions of the electrode
array were shown in Figure S1 (Supporting Information).
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Figure 2. Schematic illustrations of the transparent EMG electrode array. a)—f) Fabrication processes of the EMG electrode array. g) Photograph of the
fabricated electrode array. h) The circuit board for EMG data acquisition, which can be put into the chest pocket. The length of the cable can be adjusted
to allow the board to be placed in other locations. i) An individual wearing the EMG electrode array on the face with the data acquisition board placed

in the chest pocket.

The electrode array (Figure 2g) was attached to the facial
skin and linked to a portable Bluetooth biosensing board (Open-
BCI Cyton) (Figure 2h; Figure S2, Supporting Information).
The detailed components and circuit design of this board were
shown in the OpenBCI Documentation.[®’] Following the hard-
ware setup tutorial provided by OpenBCII®®] and code sample
from the open-source BrainFlow,!*”! four-channel EMG signals
were collected by using the electrode array as positive sensing
electrodes. The exact position of the sensing electrode was shown
in Figure 2i and further explained in Section 3.2. Meanwhile,
the ground and negative sensing electrodes were attached to the
collarbone where muscle activities were minimized.[*! The sig-
nals were collected at a frequency of 250 Hz. Subsequent sig-
nal processing involved the application of a bandpass filter with
cutoff frequencies set at 20 to 125 Hz and notch filters at 50
and 60 Hz. The lower cutoff frequency at 20 Hz effectively re-
duces non-speech motion artifacts, which were predominantly
present at lower frequencies. The higher cutoff frequency at
125 Hz was determined based on the theoretical consideration
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that the maximum cutoff frequency should be half of the sam-
pling frequency.®®! The notch filter serves to reduce power line
interferences.

The electrical, optical, mechanical properties were then eval-
uated as well as the EMG sensing performance of the fabri-
cated electrode. In specific, one pair of developed electrodes and
one pair of commercial electrodes (Kendall, H124SG) were at-
tached to the forearm skin at a distance of 8 cm to compare their
electrode-skin impedance using an impedance analyzer (E4990A,
Keysight). The EMG signals were collected from both devel-
oped electrodes and commercial electrodes for comparing their
signal-to-noise ratios (SNRs) during EMG sensing. The trans-
mittance of the electrode was measured by UV-vis Spectroscopy
(Genesys 30, Thermal Scientific) across 380 nm to 700 nm
visible wavelengths.[”] The stress-strain curve was measured
using the universal mechanical testing system (858 Mini Bionix
I1, MTS) at a speed of 1 mm min~'. Using the same equipment,
the adhesion force of the conducting layer was tested. Rectan-
gular samples were first attached to the glass slide and a skin
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Figure 3. Flow chart showing the signal processing of EMG signals for silent speech recognition: a) data filtering, b) data segment, c) windows data

extraction, d) input tensor calculation, and e—g) TCN structure settings.

replica made from Skin Tite (Smooth-On) horizontally. The sam-
ples were then subjected to a perpendicular detaching force at a
speed of 1 mm min~!. The adhesion force was calculated from
the maximum stable force divided by the sample width.l’”] The
electrode’s stability was evaluated under varying conditions. For
testing the stability at different temperatures, a thermoelectric
cooler (TEC1-12706, MikroElektronika) was employed to control
the local temperature around the skin where the electrode was at-
tached. For assessing stability under different relative humidity
levels, a humidifier/dehumidifier air filtration system (HDO012,
DINZ) and a humidity meter (PT6508, Protmex) were utilized
to control and measure the surrounding humidity. Additionally,
EMG signals were collected under skin deformations and mo-
tion artifacts. EMG signals were collected from different sam-
ples to assess sample-to-sample variations and were recorded for
five consecutive days to evaluate the long-term stability. An elec-
trochemical impedance spectroscopy (EIS) experiment was con-
ducted to test the ionic conductivity of the electrode. Following
the EIS measurement process for ionic materials,”’! AC signals
at frequencies ranging from 0.1 Hz to 7 MHz were applied to the
developed ionic materials by a potentiostat (VSP-300, BioLogic)
to acquire the Nyquist plot for calculating the ionic conductivity.

2.2. Silent Speech Recognition by TCN Model

Silent speech recognition was performed to decode acquired
speech-relevant EMG signals into spoken words. The process
consists of two tasks: speaker classification and keyword classi-
fication. Both tasks were accomplished by the architecture in-
troduced in Figure 3. The EMG raw data was collected from the
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EMG electrode array attached to the facial skin (Figure 3a). After
a signal filtering process, the data were ready for the data seg-
ment (Figure 3b). The data segment served the purpose of ex-
tracting silent speech signal trials into the individual segment
that lasts two seconds. The data segment algorithm included a
global search, a skip function, and a local search (Figure S3, Sup-
porting Information). The global search identified data points ex-
ceeding a specified threshold (e.g., 60 uV), indicating the pres-
ence of a nearby silent speech signal trial (Figure S3a, Support-
ing Information). The skip function then bypassed several data
points (e.g., 2.5 seconds of data) to prevent multiple detections
within one trial. This process was repeated until the end of the
signal. Around each located data point, the local search subse-
quently identified signal pieces by locating the largest absolute
value of the sum of the data point amplitudes (Figure S3b,c, Sup-
porting Information). The top 50 signal pieces having the largest
sum of the data point amplitudes were the final extracted trials
since each word was repeated 50 times by one individual.

The subsequent step was the execution of window data extrac-
tion (Figure 3c). Given that each word comprises multiple syl-
lables and different syllables exhibit distinct signal patterns, it
was imperative to segment the extracted signal trial into smaller
fragments to enhance classification performance. This method
for data extraction of EMG signals was advantageous to the
prior work.I®] As a result, fewer sensing electrodes were re-
quired in this work but the classification accuracy was not af-
fected. Figure 3c depicts the windows for extracting smaller sig-
nal pieces, with specified step sizes between adjacent windows.
Three key features — root mean square (RMS), Wilson amplitude,
and zero crossing — were applied to each extracted window to
compute the input tensor for the TCN model (Figure 3d). The
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equations for these three features are shown in Table S2 (Sup-
porting Information). While the convolutional neural network!”!]
excels in detecting spatial relationships within engineering prob-
lems such as composite metamaterials,[’?! the TCN model was
tailored to capture sequential dependencies and patterns over
time, which was composed of multiple residual blocks and a fi-
nal dense layer!”?! (Figure 3e,f). Each residual block combines a
causal convolutional layer, a weight normalization function, a rec-
tified linear unit (ReLU) activation function, and a dropout func-
tion. Feature normalization was employed as a common tech-
nique to facilitate model convergence and ReLU serves as a sim-
ple yet effective activation function in deep learning. The drop-
out function aids in discarding a portion of the features to prevent
overfitting. The causal convolutional layer was characterized by
two essential parameters: kernel size (k, number of adjacent ele-
ments from the input tensor) and dilation factor (d, the distance
between elements used in calculating the output tensor), as indi-
cated in Figure 3g. In a causal convolutional layer, each element
of the output tensor was computed by performing a convolutional
dot product on a sliding window of 1 + (k-1)*d elements of the
input tensor. The final dense layer incorporates a softmax activa-
tion function, commonly utilized for multiclass classification to
output the probability of each class.

2.3. System Design of the Human-Robot Collaboration

An HRC system was designed for assembling and disassembling
computer components (Figure 1a). Multiple human operators
can collaborate with a single robot manipulator to accomplish the
task. The interaction between human operators and robots was
realized by the SSIand a hand-tracking interface. The SSI utilized
the developed transparent EMG electrode array attached to the fa-
cial skin for collecting speech-relevant EMG signals (Figure 1b,c)
and the TCN algorithm for decoding EMG signals to speech
(detailed in Section 2.2). The collected EMG signals were pro-
cessed by one TCN model for speaker classification (Figure 1d)
and another TCN model for keyword classification (Figure 1e).
Once the human operator spoke silently, the speaker classifica-
tion model first pinpointed the human operator who was issu-
ing commands. Then the keyword classification determined the
speech content (i.e., the control commands to guide the robot
in performing specific tasks) from the identified human opera-
tor. Following signal processing, the identified commands were
transmitted to the robot using the MQTT method (Figure 1f).[74
The robot manipulator responded to the commands by manip-
ulating tools or computer components. The hand-tracking inter-
face (Figure 1g) was enabled by the optical positioning system
(elaborated in section 2.4), which assists the robot in assessing
the status of the human hand during the interaction process.
All processes took place in real time. In the case when multiple
human operators were issuing commands through the SSI, the
robot manipulator prioritized and executed the earlier command.

2.4. Methods for Interactions between Human Operators and
Robots

To enable the robot’s execution of manipulation tasks, a Robot
Operating System (ROS) was utilized for communication be-
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tween the TCN model and the robot manipulator. Once the algo-
rithms recognize the operator and the corresponding command,
the system publishes a task command containing this informa-
tion to a ROS topic. The topic was subscribed to by the robot ma-
nipulator in real time. Additionally, several areas were predefined
for placing parts and tools, or for recycling. This ensures that
upon receiving task commands, the robot manipulator knows
where to retrieve parts and tools, or where to place disassembled
components.

To facilitate interactions between the robot manipulator and
human operators during the hand-over process, a motion capture
system, Vicon, was employed to track the hand motion of human
operators. This prior research has thoroughly investigated meth-
ods for detecting and predicting human arm motions in sev-
eral manufacturing applications.l”>78] Multiple reflective mark-
ers were attached to the operator’s hand (Figure 1g). During
the experiment, multiple infrared cameras captured the mark-
ers from different angles simultaneously, and then the software
reconstructed the movement of the human operator in three di-
mensions based on the coordinate values. A different ROS topic
was utilized to stream the human motion data, allowing the robot
to understand where the human hand was. A motion trigger was
set when a human operator flipped the hand. This triggering
movement can be evidenced by the spatial relationship of mark-
ers on both sides of the wrist. Once triggered, the robot will de-
liver tools or parts to the human operator’s hand or take the dis-
assembled components away from the operator.

3. Results and Discussion

3.1. Characterizations of the EMG Electrode Array

The proposed EMG electrode array employs ionic conduction,
which offers distinct advantages for biopotential measurements.
Ionic conduction facilitates a low interfacial impedance between
the electrode and biological systems, promoting the detection
of low-amplitude noisy signals and enabling efficient charge in-
jection during stimulation.”®! The electrode-skin impedance is
a key parameter that reflects the electrical properties of the in-
terface and is a crucial indicator of the signal quality.3821 A
low electrode-skin impedance indicates good signal transduction
from the muscular activities involved in speech to the measurable
EMG signals by the electrodes on the skin surface.5*83#4 There-
fore, low electrode-skin impedance is desirable for high-fidelity
tracking of subtle and dynamic speech-relevant EMG signals.
Low electrode-skin impedance demands good electrode-skin con-
tact, such that the electrode can follow the rough morphologies
of the skin surfaces with minimized gaps.I®>! Previous research
has revealed that a low elastic modulus and strong adhesion can
improve the contact between the electrode and skin.[*#¢] Based
on these requirements, different material compositions for the
proposed electrode were evaluated. The conducting layer, serv-
ing as the sensing element of the electrode, comprises an ionic
liquid and WPU matrix. The ionic liquid was made by dissolving
NaCl in quantities close to the maximum solubility in the EG/DI
water. Various weight ratios between the ionic liquid and WPU
(1:5, 2:5, 3:5) were tested to optimize the electrode.

With an increase in the ratio of ionic liquid, the electrode
becomes softer and consistently exhibits non-linear elasticity
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(Figure 4a). Notably, the electrode is considerably softer than
the human skin’s epidermis, which typically possesses an elas-
tic modulus of approximately 1 MPa.[*”] The electrode, as an ionic
conductor, has a unique biphasic liquid-solid phase property. The
ionicliquid is retained in the interconnected structure of the ionic
conductor and changes in solvent content can affect this phase
property and, in turn, affect the adhesion.[®] The electrode with a
ratio of 2:5 has a much stronger adhesion than the electrode with
aratio of 1:5 (Figure 4b). Its adhesion force is comparable to that
of commercial electrodes, as shown in the referenced study.l®!
The electrode with the 3:5 ratio, however, shows inadequate ad-
hesion force. This can be attributed to the insufficient embedding
of the ionic liquid in the WPU matrix, which results in residual
ionic liquid on the surface and therefore a reduction in adhe-
sion. In addition, the conductivity (Figure 4c) and Nyquist plot
(Figure S4, Supporting Information) show that the conductivity
of electrodes increases with increasing the ionic liquid concen-
tration, as a higher concentration yields more ions to establish
conductive pathways. All these properties affect the electrode-
skin impedance. The electrode with an ionic liquid to WPU of
2:5 exhibits a lower electrode-skin impedance than the other two.
The impedance is comparably low compared to the commercial
electrode (gold standard) (Figure 4d). Since the electrode array
is attached to the facial skin, visually unobtrusiveness is impor-
tant for wide user acceptance. As shown in Figure 4e, electrodes
with different ionic liquid to WPU matrix ratios exhibit similar
transmittance across the visible wavelengths. After laminating
the PDMS substrate layer, the transmittance slightly decreased,
yet maintained a good transmittance of around 80% at most visi-
ble wavelengths (Figure 2g; Figure S5, Supporting Information).

Considering the performance above, the weight ratio of 2:5 be-
tween ionic liquid and WPU was selected as the final composition
for the electrode. Figure S6 (Supporting Information) compares
the EMG signals obtained from the developed electrode and a
commercial gel electrode placed adjacent. The average Signal-to-
Noise Ratio (SNR) for five trials, computed using the equation
provided in Table S3 (Supporting Information), was 15.78 dB
for the developed electrode and 16.42 dB for the commercial
electrode. The comparable SNRs demonstrate that the developed
electrode can achieve EMG sensing performance similar to that
of the commercial gel electrode. Note the developed electrode is
gel-free, stretchable, and transparent, which addresses the limita-
tions of commercial gel electrodes, such as bulkiness, inability to
follow skin movements, skin irritation caused by the conductive
gel, gel dehydration, and poor user acceptance for facial attach-
ments. The electrode demonstrates robust performance across
various conditions. At ambient temperatures between 4 °C and
40 °C, the noise RMS remains within 5 — 7 pV, and the SNR of
EMG signals at all temperatures exceeds 15 dB, with only min-
imal variation (Figure 4f). Relative humidity from 40% to 98%
similarly has little impact, leading to noise RMS levels below 7 pV
and SNRs at or above 15 dB (Figure S7, Supporting Information).
Even during skin stretching and compression, the noise RMS
and SNR remain stable, indicating good electrode-skin contact
(Figure S8, Supporting Information). However, cable movement
introduces significant motion artifacts, raising the noise RMS
to above 15 uV (Figure S9, Supporting Information). Applying
a high-pass filter can help reduce the noise to around 7 uV, which
is slightly higher than that of normal conditions. As illustrated in
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Figure S10 (Supporting Information), noise levels and SNRs of
EMG signals collected from different pairs of electrodes exhibit
similar performance, with minimal sample-to-sample variations.
Over five days, noise RMS levels of the electrode show a slight up-
ward trend (Figure S11, Supporting Information) while the SNR
of EMG signals on days 4 and 5 is slightly lower than that of the
first three days, the SNR values remain high for EMG sensing.

Table S4 (Supporting Information) shows comparisons of ex-
isting transparent electrodes in the literature and the electrodes
developed in this work for biopotential measurements. These
transparent electrodes are categorized into ionically conductive
and electrically conductive types. The reported ionic electrodes
demonstrate higher transmittance compared to the electrically
conductive electrodes. Compared to other ionic electrodes, our
electrodes exhibit a lower modulus, which is crucial for wearing
comfort and ensuring conformal contact at the skin-electrode in-
terface. This conformal contact enhances the signal-to-noise ratio
(SNR) of the electrodes.

3.2. Speech-Relevant Signals Acquired from the EMG Electrode
Array

Utilizing the procedure detailed in Section 2.1, we collected EMG
signals corresponding to eighteen keywords (Figure 4g) from
five individuals. EMG electrodes were affixed in the supralabial
and infralabial regions (Figure 2i), which are the optimized sens-
ing locations for speech recognition.[*] All electrodes placed on
the neck were excluded compared to our previous work.**] The
recognition accuracy was maintained with fewer electrodes due
to the improvement in the classification algorithm. The four fa-
cial muscles involved are the depressor anguli oris (Channel 1),
zygomaticus major (Channel 2), zygomaticus minor (Channel 3),
and masseter (Channel 4). As an example, Figure 4g presents
a single trial of the EMG signal from Channel 1 for the eigh-
teen keywords and Figure S12 (Supporting Information) shows
multiple trials of 4-channel signals corresponding to the com-
mand “bottom case”. Signals from the same keyword by the same
speaker can exhibit considerable variation as shown in Figure S13
(Supporting Information), due to the inability of the speaker to
consistently control facial muscles while repeating the same key-
word. The complexity of speech signals underscores the need for
a deep learning approach to aid in classification. Additionally, the
differences in signal patterns for the same keyword across differ-
ent speakers, such as frequency and signal amplitude, allow for
the classification of different speakers using the EMG signals.

3.3. Performance of the Silent Speech Recognition Interface

As shown in Figure 5a, the input tensor for training the TCN
model is three-dimensional: (NTXNW, NS, NCxNF), where NT,
NW, NS, NC, and NF denote the number of trials, number of
words, number of steps, number of channels, and number of
features, respectively. NT was set to 50, representing the repe-
tition of each keyword 50 times. Since there are eighteen key-
words, NW was set to 18 for a single individual and 90 for five
individuals. NS was 24, calculated from one trial signal length
of 2 s, window length of 0.16 s, and step size of 0.08 s, as ex-
plained in Figure S14 (Supporting Information). NC was equal
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Figure 4. Characterizations of the EMG electrode array. a) Strain-stress curves of the conducting layer of the developed electrode. b) Adhesion of the
electrode to the glass and skin replica. c¢) Conductivity of the ionic conducting layer in the developed electrode array. The conductivity was measured
by applying AC signals across the ionic material, which was sandwiched between two ion-blocking electrodes. d) Comparisons of the electrode-skin
impedance of the developed electrode and the commercial gel electrode. €) Transmittance of the developed electrode (conducting layer only, other
layers are transparent elastomers). f) RMS of noises and SNR of EMG signals acquired at different ambient temperatures. g) The Channel 1 EMG
signals of eighteen keywords for HRC. Each piece of the signal is extracted by the data segment program. Only Channel 1 signals are shown as examples.
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Figure 5. Results for silent speech recognition. a) Input tensor structures and 5-fold validation results. NT, NW, NS, NC, and NF refer to the number
of trials, number of keywords, number of steps, number of EMG channels, and number of features, respectively. b) T-distributed stochastic neighbor
embedding (t-SNE) of five speakers for the first validation set (as an example). ) t-SNE of eighteen words for the first validation set. d) Confusion matrix
for classifying the five speakers. ) Confusion matrix for classifying eighteen words spoken by speaker 1.

to 4 to indicate 4 channels, and NF was 3 due to the use of three
features (root mean square, Wilson amplitude, and zero cross-
ing). Hence, the input tensor size for speaker classifications was
(50%90, 24, 4x3), while the size for keyword classifications was
(50x18, 24, 4x3). The output tensor is one-dimensional, with a
size of (50x90,) for speaker classification and (50x18,) for key-
word classification. Five-fold validation was utilized to train the
model (Figure 5a). The data was divided into five sets. Four sets
were treated as training sets and one set was employed as a test-
ing set each time. Necessary hyperparameter tuning for the TCN
model was conducted by using the grid search function. The final
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hyperparameters for the TCN model are summarized in Table S5
(Supporting Information).

The speaker classification and keyword classification achieved
average accuracies of 97.5% and 91.5%, respectively, despite
the use of only four electrodes. Besides, our previous study!*!
has revealed that EMG-based silent speech recognition was not
compromised by environmental noises, illustrating the advan-
tage of silent speech interfaces in noisy environments, such as
in the manufacturing industry. To visually showcase the high-
dimensional features of the TCN model, the t-distributed stochas-
tic neighbor embedding (t-SNE),[*) which is a well-known
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Figure 6. Demonstrations for SSl-assisted HRC. a) A human operator wearing the SSI. b) Experimental setups for the robot manipulator, desktop, and
component area. c) The motion capture system based on infrared cameras. d,e) The infrared markers placed on the hand. Video clips showing the
collaborative assembly/disassembly processes: f) The assembly process by one human operator and the robot manipulator, g) the disassembly process
by one human operator and the robot manipulator, and h) the disassembly process by two human operators and the robot manipulator.

technique to map high-dimensional features in 2D or 3D space,
was utilized. The t-SNE plot, based on the output tensor from the
final residual block of the TCN model, illustrates the effective
grouping of features for different individuals (Figure 5b). Sim-
ilarly, the t-SNE plot for the keyword classification (Figure 5c)
shows that the TCN model can also classify features of each word
in a good manner. Figure 5d,e summarize the confusion matrix
of the recognition results for different speakers and keywords,
respectively. The TCN model performs very well for speaker clas-
sification and performs well on most keywords.

3.4. System Performance in Human-Robot Collaboration During
Assembly and Disassembly

To demonstrate the application of the developed SSI, we designed
an HRC system consisting of SSI and a hand-tracking interface
(Figure 6a—e), as detailed in Sections 2.3 and 2.4. Three cases
in collaborative manufacturing tasks were demonstrated: A col-
laborative robot assisting a human operator in both assembly
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(Figure 6f) and disassembly (Figure 6g) tasks, as well as a collab-
orative robot working alongside two human operators in a disas-
sembly task (Figure 6h). With the help of Vicon motion tracking
cameras (Figure 6¢) and different optical markers placed on the
human hands (Figure 6d,e), the robot manipulator can detect the
motion trigger when the human operator flips the hand to initiate
the hand-over process.

In the one-human-one-robot scenario for assembly, the human
operator sat opposite the robotic manipulator, engaging in the as-
sembly of a desktop tower (Figure 6f and Video S1, Supporting
Information). The assembly tool (i.e., screwdriver) and desktop
components were placed in different predefined areas separately.
The human operator issued commands regarding specific tools
or components (e.g., expansion card) to the robot manipulator
throughout the assembly by making lip movements without pro-
ducing any sound for each command. After receiving commands
from the human operator, the robot manipulator executed the
corresponding pick-up task of the requested tool or component.
After picking up the tool or component, the manipulator moved
it toward the human operator and maintained the grip until the
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human operator flipped the hand for the handover process. The
tool or component was released by the manipulator and then the
human operator picked it up for assembly. In the scenario where
one human operator collaborates with one robot for disassem-
bly (Figure 6g and Video S2, Supporting Information), a similar
setup to the one-human-one-robot assembly case was adopted.
After receiving the command (e.g., data cable) from the human,
the robot manipulator retrieved the disassembled part from the
human hand and deposited it into the appropriate recycling bin.

As for the two-human-one-robot disassembly case, one human
operator was responsible for disassembling the desktop while the
other focused on disassembling the laptop. Two separate recy-
cling bins were set up, one for desktop components and one for
laptop components (Figure 6h and Video S3, Supporting Infor-
mation). The robot manipulator first identified the operator us-
ing the speaker classification model and then identified the com-
mand from the identified operator using the keyword classifica-
tion model. Under the guidance of the command, the robot ma-
nipulator moved toward the operator, detected the motion trig-
ger for the hand-over process, retrieved the component from the
hand, and then placed it in the appropriate bin. Our proof-of-
concept demonstrations illustrate that the robot manipulator was
able to receive instructions from human operators using the de-
veloped SSI and execute the corresponding tasks for all three sce-
narios.

4, Conclusions

In conclusion, this work explores material optimization, struc-
tural design, deep learning algorithms, and system integration
techniques toward an unobtrusive and effective SSI for HRC.
High accuracies, 97.5% for speaker classification and 91.7% for
keyword classification, were achieved by the TCN model. Toward
the application in HRC for manufacturing, we present a frame-
work for assembly/disassembly tasks by combining the SSI for
robot control and the hand-tracking interface for human opera-
tor motion detection. Three HRC scenarios, including a collab-
orative robot assisting a human operator in both assembly and
disassembly tasks, and a collaborative robot working alongside
two human operators in a disassembly task, were successfully
demonstrated. The developed framework for HRC has the po-
tential to improve robot control in noisy environments and to in-
corporate more human operators, such as individuals with voice
disorders, into the manufacturing industry.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements

This material was based upon work supported by the National Science
Foundation under Award No. ECCS-2238363 and ECCS-2335863. S.Y.
would like to acknowledge the support from the start-up fund at Stony
Brook University. The authors express sincere gratitude to Professor Lifeng
Wang and his Ph.D. student Xihang Jiang from the Department of Mechan-
ical Engineering at Stony Brook University for their assistance in tensile

Adv. Mater. Technol. 2024, 2400990
I KA

2400990 (11 of 13)

www.advmattechnol.de

testing. The authors also would like to thank Professor Xinwei Mao and
her Postdoctoral Associate Dr. Mian Wang from the Department of Civil
Engineering at Stony Brook University for their help with the UV-vis test-
ing system.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Keywords

biopotential electrodes, electromyography, human-robot collaboration,
machine learning, silent speech recognition

Received: June 20, 2024
Revised: September 2, 2024
Published online:

[1] W.Lee,].].Seong, B. Ozlu, B.S. Shim, A. Marakhimov, S. Lee, Sensors
2021, 21, 22.
[2] Y. Lu, H. Tian, ). Cheng, F. Zhu, B. Liu, S. Wei, L. Ji, Z. L. Wang, Nat.
Commun. 2022, 13, 1401.

[3] G.S.Meltzner,|.T. Heaton, Y. Deng, G. De Luca, S. H. Roy, J. C. Kline,

J. Neural. Eng. 2018, 15, 046031.

T. Srivastava, P. Khanna, S. Pan, P. Nguyen, S. Jain, Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol. 2022, 6, 140.

[5] K.Sun, C.Yu, W. Shi, L. Liu, Y. Shi, presented at Proceedings of the 31st

Annual ACM Symposium on User Interface Software and Technology,

ACM, Berlin, Germany 2018, p. 581.

Q. Zhang, D. Wang, R. Zhao, Y. Yu, Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 2021, 5, 43.

[7] G. Bolano, A. Roennau, R. Dillmann, presented at 27th IEEE Inter-

national Symposium on Robot and Human Interactive Communication

(RO-MAN), IEEE, Nanjing, China 2018, p. 1075.

G. Bolano, L. Iviani, A. Roennau, R. Dillmann, presented at 20217 30th

IEEE International Conference on Robot & Human Interactive Commu-

nication (RO-MAN), |EEE, Vancouver, Canada 2021, p. 806.

[9] ). N. Pires, G. Bugmann, Ind. Robot 2005, 32, 505.

[10] P. Gustavsson, A. Syberfeldt, R. Brewster, L. Wang, Proc. CIRP 2017,
63, 396.

[11] ). Tasevski, M. Nikolic, D. Miskovic, Serb. J. Electr. Eng. 2013, 10, 219.

[12] Y. Li, A. Parsan, B. Wang, P. Dong, S. Yao, R. Qin, Eng. Appl. Aﬂ[ﬁ
Intell. 2023, 117, 105597.

[13] Y. Sun, W. Wang, Y. Chen, Y. Jia, IEEE Trans. Syst. Man. Cybern. 2022,
52, 728.

[14] Y. Chen, W. Wang, Z. Abdollahi, Z. Wang, J. Schulte, V. Krovi, Y. Jia,
IEEE Robot. Autom. Mag. 2018, 25, 107.

[15] H. Bley, G. Reinhart, G. Seliger, M. Bernardi, T. Korne, CIRP Ann.
2004, 53, 487.

[16] M.-L. Lee, X. Liang, B. Hu, G. Onel, S. Behdad, M. Zheng, J. Manuf.
Sci. Eng. 2024, 146, 020902.

[17] W. Wang, R. Li, Y. Chen, Y. Sun, Y. Jia, IEEE Trans. Autom. Sci. Eng.
2022, 19, 2339.

[18] Z.H.Zhou, G.Y.Zhao, X. P. Hong, M. Pietikainen, Image Vis. Comput.
2014, 32, 590.

[4

[6

[8

© 2024 Wiley-VCH GmbH

85U8017 SUOWILLIOD @A 18810 3deo!dde ayy Aq peusenob a1e ssjoie YO ‘@S Jo'sa|nl 1oy ArIqiT8UIIUO AB[IA O (SUONIPUOD-PUe-SLLLIBYWOY A8 | 1M ARIq 1 BU1[UO//SdNL) SUORIPUOD PUe SWwid | 8u 88S *[7202/0T/TE] uo AreiqiTaulluo Aeim ‘AisieAlun 3ooig Auois Auns Aq 066001202 IWPe/Z00T OT/I0P/W0 A8 1M AeIq Ul |Uo//SdnY WOy papeojuMod ‘0 ‘X60LS9E2


http://www.advancedsciencenews.com
http://www.advmattechnol.de
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadmt.202400990&mode=

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

(19]

(20]

[21]
[22]
(23]
(24]
(25]
[26]
[27]
28]

[29]

(30]

(31]

32

(33]
(34]
(35]

36]

(37]
38]
(39]
[40]

[41]

[42]

43]

[44]

Adv. Mater. Technol. 2024, 2400990

ADVANCED
MATERIALS
TECHNOILOGIES

Y. M. Assael, B. Shillingford, S. Whiteson, N. De Freitas, (Preprint)
arXiv, arXiv:1611.01599 2016.

A. Fernandez-Lopez, O. Martinez, F. M. Sukno, presented at Proceed-
ings of the 2017 12th International Conference on Automatic Face and
Gesture Recognition, |EEE, Washington DC, USA 2017, p. 208.

T. Afouras, . S. Chung, A. Senior, O. Vinyals, A. Zisserman, |EEE
Trans. Pattern Anal. Mach. Intell. 2022, 44, 8717.

B. Denby, M. Stone, in Proceedings of the 2004 |EEE International Con-
ference on Acoustics, Speech, and Signal Processing, |EEE, Montreal,
Canada 2004, p. 685.

A. Jaumard-Hakoun, K. Xu, C. Leboullenger, P. Roussel-Ragot, B.
Denby, presented at Proceedings of Interspeech 2016, ISCA, San
Francisco, USA 2016, p. 1467.

J. Tang, A. LeBel, S. Jain, A. G. Huth, Nat. Neurosci. 2023, 26, 858.
G. Wang, Y. Zou, Z. Zhou, K. Wu, L. M. Ni, IEEE Trans. Mob. Comput.
2016, 15, 2907.

A. Bedri, H. Sahni, P. Thukral, T. Starner, D. Byrd, P. Presti, G. Reyes,
M. Ghovanloo, Z. Guo, Computer 2015, 48, 54.

R. Hofe, S. R. Ell, M. J. Fagan, J. M. Gilbert, P. D. Green, R. K. Moore,
S. I. Rybchenko, Speech Commun. 2013, 55, 22.

J. S. Brumberg, A. Nieto-Castanon, P. R. Kennedy, F. H. Guenther,
Speech Commun. 2010, 52, 367.

T. Schultz, M. Wand, T. Hueber, D. . Krusienski, C. Herff, J. S.
Brumberg, IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25,
2257.

S. L. Metzger, K. T. Littlejohn, A. B. Silva, D. A. Moses, M. P. Seaton, R.
Wang, M. E. Dougherty, ). R. Liu, P. Wu, M. A. Berger, |. Zhuravleva,
A. Tu-Chan, K. Ganguly, G. K. Anumanchipalli, E. F. Chang, Nature
2023, 620, 1037.

F. R. Willett, E. M. Kunz, C. Fan, D. T. Avansino, G. H. Wilson, E. Y.
Choi, F. Kamdar, M. F. Glasser, L. R. Hochberg, S. Druckmann, K. V.
Shenoy, J. M. Henderson, Nature 2023, 620, 1031.

K. Brigham, B. V. Kumar, presented at Proceedings of the 2010 4th
International Conference on Bioinformatics and Biomedical Engineering,
IEEE, Chengdu, China 2010, p. 1.

P. Suppes, Z. L. Lu, B. Han, Proc. Natl. Acad. Sci. USA1997, 94, 14965.
P. Khanna, T. Srivastava, S. Pan, S. Jain, P. Nguyen, presented at Pro-
ceedings of the 22nd International Workshop on Mobile Computing Sys-
tems and Applications, ACM, Virtual, United Kingdom 2021, p. 44.

J. Rekimoto, Y. Nishimura, presented at Proceedings of Augmented Hu-
mans Conference 2021, ACM, Rovaniemi, Finland 2021, p. 91.

J. A. Gonzalez, L. A. Cheah, A. M. Gomez, P. D. Green, ). M. Gilbert,
S. R. Ell, R. K. Moore, E. Holdsworth, IEEE/ACM Trans. Audio Speech
Lang. Process. 2017, 25, 2362.

P. W. Schonle, K. Grabe, P. Wenig, J. Hohne, J. Schrader, B. Conrad,
Brain Lang. 1987, 31, 26.

P. Dong, Y. Li, S. Chen, ). T. Grafstein, I. Khan, S. Yao, Mater. Horiz.
2023, 10, 5607.

Y.Jin, Y. Gao, X. Xu, S. Choi, ). Li, F. Liu, Z. Li, Z. Jin, Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2022, 6, 57.

J. Wang, C. Pan, H. Jin, V. Singh, Y. Jain, ]. . Hong, C. Majidi, S. Kumar,
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 155.
T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim, Y. Byeon, H. Kim, Y. Gao, J. R.
Lee, G. Son, T. Kim, Y. Jun, J. Kim, J. Lee, S. Um, Y. Kwon, B. G. Son,
M. Cho, M. Sang, J. Shin, K. Kim, J. Suh, H. Choi, S. Hong, H. Cheng,
H. G. Kang, D. Hwang, K. J. Yu, Nat. Commun. 2022, 13, 5815.

H. Yoo, E. Kim, J. W. Chung, H. Cho, S. Jeong, H. Kim, D. Jang, H.
Kim, J. Yoon, G. H. Lee, H. Kang, J. Y. Kim, Y. Yun, S. Yoon, Y. Hong,
ACS Appl. Mater. Inteifaces 2022, 14, 54157.

Y. H. Wang, T. Y. Tang, Y. Xu, Y. Z. Bai, L. Yin, G. Li, H. M. Zhang, H.
C. Liu, Y. A. Huang, npj Flex. Electron. 2021, 5, 20.

H. Liu, W. Dong, Y. Li, F. Li, ). Geng, M. Zhu, T. Chen, H. Zhang, L.
Sun, C. Lee, Microsyst. Nanoeng. 2020, 6, 16.

RIGHTSE LI MN iy

(4]

(46]
[47]

48]

[49]
[50]

[51]

[52]
(53]
[54]

[55]

[56]

(57]
(58]
(59]
(60]
[61]
(62]
(63]
[64]
[65]
[66]
[67]
(68]
(6]
[70]
(71

[72]
[73]

[74]

[75]

[76]

2400990 (12 of 13)

www.advmattechnol.de

P. Dong, Y. Song, S. Yu, Z. Zhang, S. K. Mallipattu, P. M. Djuric, S.
Yao, Small 2023, 19, 2205058.

X. Xu, X. D. Gu, S. Chen, Int. J. Heat Mass Transf. 2023, 202, 123720.
X. Xu, X. D. Gu, S. Chen, Comput. Methods Appl. Mech. Eng. 2022,
398, 115183.

J. Tian, M. Li, Z. Han, Y. Chen, X. D. Gu, Q. J. Ge, S. Chen, Comput.
Methods Appl. Mech. Eng. 2022, 389, 114394.

L. Cheng, ). Li, A. Guo, ). Zhang, npj Flex. Electron 2023, 7, 39.

W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma, Y. Zhu, ACS Nano 2020, 14,
5798.

J. A. Fan, W. H. Yeo, Y. Su, Y. Hattori, W. Lee, S. Y. Jung, Y. Zhang, Z.
Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J.
Larsen, Y. Huang, J. A. Rogers, Nat. Commun. 2014, 5, 3266.

W. Zou, H. Yu, X. Lv, P. Zhou, H. Guo, Y. Zhong, L. Liu, Adv. Mater.
Interfaces 2022, 9, 2201197.

B. Sun, R. N. McCay, S. Goswami, Y. Xu, C. Zhang, Y. Ling, ). Lin, Z.
Yan, Adv. Mater. 2018, 30, 1804327.

S.Yoon, Y. ). Kim, Y. R. Lee, N.-E. Lee, Y. Won, S. Gandla, S. Kim, H.-K.
Kim, NPG Asia Mater 2021, 7, 4.

B. Shin, S. H. Lee, K. Kwon, Y. J. Lee, N. Crispe, S. Y. Ahn, S. Shelly,
N. Sundholm, A. Tkaczuk, M. K. Yeo, H. J. Choo, W. H. Yeo, Adv. Sci.
2024, 11, 2404211.

K. Lee, X. Ni, J. Y. Lee, H. Arafa, D. ). Pe, S. Xu, R. Avila, M. Irie, ).
H. Lee, R. L. Easterlin, D. H. Kim, H. U. Chung, O. O. Olabisi, S.
Getaneh, E. Chung, M. Hill, . Bell, H. Jang, C. Liu, ). B. Park, J. Kim,
S. B. Kim, S. Mehta, M. Pharr, A. Tzavelis, |. T. Reeder, I. Huang, Y.
Deng, Z. Xie, C. R. Davies, et al., Nat. Biomed. Eng. 2020, 4, 148.

L. Zhang, K. S. Kumar, H. He, C. J. Cai, X. He, H. Gao, S. Yue, C. L,
R. C. Seet, H. Ren, ). Ouyang, Nat. Commun. 2020, 11, 4683.

H. Sipahi, R. Reis, O. Dinc, T. Kavaz, A. Dimoglo, A. Aydin, Hum. Exp.
Toxicol. 2019, 38, 1314.

M. Rusdi, Y. Moroi, H. Nakahara, O. Shibata, Langmuir 2005, 27,
7308.

H. M. Trimble, Ind. Eng. Chem. 1931, 23, 165.

P. Geng, A. Zore, M. R. Van De Mark, Polymers 2020, 12, 2752.

X.-F. Wei, E. Linde, M. S. Hedenqvist, npj Mater. Degrad. 2019, 3, 18.
C. ). Wang, M. Cai, Z. M. Hao, S. Nie, C. Y. Liu, H. G. Du, ). Wang, W.
Q. Chen, . Z. Song, Adv. Intell. Syst. 2021, 3, 210003 1.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M.
Schnyer, D. Akinwande, N. Lu, ACS Nano 2017, 11, 7634.

OpenBCl,  Cyton  Specs, https://docs.openbci.com/Cyton/
CytonSpecs/, (accessed: August 2024).

OpenBCl, Cyton Getting Started Guide https://docs.openbci.com/
GettingStarted/Boards/CytonGS/, (accessed: August 2024).
BrainFlow, Python Real Time Plot, https://brainflow.readthedocs.io/
en/stable/Examples.html#python-real-time-plot, (accessed: August
2024).

C. E. Shannon, Proc. IRE 1949, 37, 10.

NASA, Visible Light, https://science.nasa.gov/ems/09_visiblelight/,
(accessed: April 2024).

Y. Ding, Z. Zheng, Matter 2022, 5, 2570.

Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436.

X. Jiang, F. Liu, L. Wang, Theor. Appl. Mech. Lett. 2023, 13, 100485.
C. Lea, M. D. Flynn, R. Vidal, A. Reiter, G. D. Hager, presented at Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, IEEE, Honolulu, USA 2017, p. 156.

U. Hunkeler, H. L. Truong, A. Stanford-Clark, presented at Proceed-
ings of the 2008 3rd International Conference on Communication Sys-
tem Software and Middleware and Workshops, |EEE, Bangalore, India
2008, p. 791.

S. Tian, X. Liang, M. H. Zheng, presented at 2023 American Control
Conference, |EEE, San Diego, USA, 2023, p. 3356.

S. Tian, M. Zheng, X. Liang, IEEE Robot. Autom. Lett. 2024, 9, 6232.

© 2024 Wiley-VCH GmbH

85U8017 SUOWILLIOD @A 18810 3deo!dde ayy Aq peusenob a1e ssjoie YO ‘@S Jo'sa|nl 1oy ArIqiT8UIIUO AB[IA O (SUONIPUOD-PUe-SLLLIBYWOY A8 | 1M ARIq 1 BU1[UO//SdNL) SUORIPUOD PUe SWwid | 8u 88S *[7202/0T/TE] uo AreiqiTaulluo Aeim ‘AisieAlun 3ooig Auois Auns Aq 066001202 IWPe/Z00T OT/I0P/W0 A8 1M AeIq Ul |Uo//SdnY WOy papeojuMod ‘0 ‘X60LS9E2


http://www.advancedsciencenews.com
http://www.advmattechnol.de
https://docs.openbci.com/Cyton/CytonSpecs/
https://docs.openbci.com/Cyton/CytonSpecs/
https://docs.openbci.com/GettingStarted/Boards/CytonGS/
https://docs.openbci.com/GettingStarted/Boards/CytonGS/
https://brainflow.readthedocs.io/en/stable/Examples.html#python-real-time-plot
https://brainflow.readthedocs.io/en/stable/Examples.html#python-real-time-plot
https://science.nasa.gov/ems/09_visiblelight/
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadmt.202400990&mode=

ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS
TECHNOLOGIES

www.advancedsciencenews.com

www.advmattechnol.de

[77] K.A. Eltouny, W. Liu, S. Tian, M. Zheng, X. Liang, IEEE Robot. Autom. [85] ). W. Jeong, W. H. Yeo, A. Akhtar, J. J. Norton, Y. J. Kwack, S. Li, S. Y.

Lett. 2024, 9, 2192.

Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W. S. Choi, T. Bretl, J.

[78] X.Zhang, S. Tian, X. Liang, M. Zheng, S. Behdad, J. Comput. Inf. Sci. A. Rogers, Adv. Mater. 2013, 25, 6839.

Eng. 2024, 24, 5. [86] S.D.Wang, M. Li, J. Wu, D. H. Kim, N. S. Lu, Y. W. Su, Z. Kang, Y. G.
[79] D.C. Martin, G. G. Malliaras, ChemElectroChem 2016, 3, 686. Huang, ). A. Rogers, J. Appl. Mech. 2012, 79, 031022.
[80] G.Li, S. Wang, Y. Y. Duan, Sens. Actuators, B 2017, 241, 1244. [87] C.Li, G.Guan, R. Reif, Z. Huang, R. K. Wang, J. R. Soc. Interface 2012,

[81] S.S.Yao, Y. Zhu, Jom 2016, 68, 1145.

9,831.

[82] S.Yao,].Yang, F.R. Poblete, X. Hu, Y. Zhu, ACS Appl. Mater. Interfaces ~ [88] X.Fan,S. Liu, Z.Jia, ). ). Koh, J. C. C. Yeo, C. G. Wang, N. E. Surat’'man,

2019, 77, 31028.

X. J. Loh, ). L.e Bideau, C. He, Z. Li, T. P. Loh, Chem. Soc. Rev. 2023,

[83] Q. Qin, J. Li, S. Yao, C. Liu, H. Huang, Y. Zhu, IEEE Access 2019, 7, 52, 2497.
20789. [89] L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng, M. Wang, T. Wang, Y. Jiang,
[84] S.Yao, W. Zhou, R. Hinson, P. Dong, S. Wu, . lves, X. Hu, H. Huang, B. Ji, D. Li, X. Chen, Adv. Mater. 2020, 32, 2003723.

Y. Zhu, Adv. Mater. Technol. 2022, 7, 2101637.

Adv. Mater. Technol. 2024, 2400990
RIGHTSE LI MN iy

[90] L.V.D. Maaten, G. Hinton, J. Mach. Learn. Res. 2008, 9, 2579.

2400990 (13 of 13) © 2024 Wiley-VCH GmbH

85U8017 SUOWILLIOD @A 18810 3deo!dde ayy Aq peusenob a1e ssjoie YO ‘@S Jo'sa|nl 1oy ArIqiT8UIIUO AB[IA O (SUONIPUOD-PUe-SLLLIBYWOY A8 | 1M ARIq 1 BU1[UO//SdNL) SUORIPUOD PUe SWwid | 8u 88S *[7202/0T/TE] uo AreiqiTaulluo Aeim ‘AisieAlun 3ooig Auois Auns Aq 066001202 IWPe/Z00T OT/I0P/W0 A8 1M AeIq Ul |Uo//SdnY WOy papeojuMod ‘0 ‘X60LS9E2


http://www.advancedsciencenews.com
http://www.advmattechnol.de
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadmt.202400990&mode=

