

MRS 3955000 **Session SB05.03.06**

Advanced Silent Speech Interfaces: Unobtrusive EMG Electrode and Soft Magnetic Skin Approaches

Smart Structures and Soft Electronics Lab

Penghao Dong¹, Yuanqing Song², Yizong Li¹, Si Chen¹, Petar M. Djurić², Shanshan Yao¹* ¹ Department of Mechanical Engineering, ² Department of Electrical and Computer Engineering, Stony Brook University

Project Objectives and Goals

Develop innovative silent speech interfaces by integrating functional materials, smart structures, and machine learning.[1-2]

Background

- Figures from references [3-4]
- The facial Electromyogram (EMG) and facial skin deformations exhibit a strong correlation with the content of silent speech.
- The dry electrode is an excellent choice for EMG data collection.
- The magnetic skin exhibits great sensitivity to skin deformation.

Sensor Fabrication

I. Unobtrusive Biopotential Electrode:

. Results: Unobtrusive Biopotential Electrode

- The soft, adhesive, and translucent dry biopotential electrode forms a conformal contact with the skin, ensuring a low impedance and a high SNR.
 - The LDA and SVM models demonstrate a high accuracy in classifying words with similar pronunciations.
 - Various sensing locations make distinct contributions to the final accuracy.

can enhance signal quality

II. Results: Soft Magnetic skin

Applications

I. Application in Augmented Reality(AR) and Medical Service:

II. Application in Human-machine Interaction:

Demonstrations are developed to illustrate the potential of the silent speech interfaces in AR, medical services, and humanmachine interactions.

Conclusion and Future Study

- This project involves the development of two silent speech interfaces through thorough investigations into materials, structural design, sensing locations, machine learning methods.
- In the future, there is a need for the development of **phoneme**level silent speech recognition algorithms.

Acknowledgement

The authors acknowledge NSF for financial support to this project from grants ECCS-2129673 and 2238363.

Publications

[1] Dong, P. et al. Electromyogram-Based Lip-Reading via Unobtrusive Dry Electrodes and Machine Learning Methods. Small 19, e2205058 (2023).

[2] Dong, P. et al. Decoding silent speech commands from articulatory movements through soft magnetic skin and machine learning. Mater. Horiz. (2023).

References

[3] Zhang, L. et al. *Nat. Commun.* 11, 4683 (2020).

[4] Sun, T. et al. Nat. Biomed. Eng. 4, 954-972 (2020).